A method for correcting the vertical profile of reflectivity measurements and rainfall estimates (VPR) in plan position indicator (PPI) scans of polarimetric weather radars in the melting layer and the snow layer during stratiform rain is presented. The method for the detection of the boundaries of the melting layer is based on the well-established characteristic of local minimum of copolar correlation coefficient in the melting layer. This method is applied to PPI scans instead of a beam-by-beam basis with the addition of new acceptance criteria adapted to the radar used in this study. An apparent vertical profile of reflectivity measurements, or rainfall estimate, is calculated by averaging the range profiles from all of the available azimuth directions in each PPI scan. The height of each profile is properly scaled with melting-layer boundaries, and the reflectivity, or rainfall estimate, is normalized with respect to its value at the lower boundary of the melting layer. This approach allows variations of the melting-layer boundaries in space and time and variations of the shape of the apparent VPR in time. The application of the VPR correction to reflectivity and rainfall estimates from a reflectivity–rainfall algorithm and a polarimetric algorithm showed that this VPR correction method effectively removes the bias that is due to the brightband effect in PPI scans. It performs also satisfactorily in the snow region, removing the decrease of the observed VPR with range but with an overestimation by 2 dB or more. This method does not require a tuning using climatological data, and it can be applied on any algorithm for rainfall estimation.

A method for correcting the vertical profile of reflectivity measurements and rainfall estimates (VPR) in plan position indicator (PPI) scans of polarimetric weather radars in the melting layer and the snow layer during stratiform rain is presented. The method for the detection of the boundaries of the melting layer is based on the well-established characteristic of local minimum of copolar correlation coefficient in the melting layer. This method is applied to PPI scans instead of a beam-by-beam basis with the addition of new acceptance criteria adapted to the radar used in this study. An apparent vertical profile of reflectivity measurements, or rainfall estimate, is calculated by averaging the range profiles from all of the available azimuth directions in each PPI scan. The height of each profile is properly scaled with melting-layer boundaries, and the reflectivity, or rainfall estimate, is normalized with respect to its value at the lower boundary of the melting layer. This approach allows variations of the melting-layer boundaries in space and time and variations of the shape of the apparentVPRin time. The application of theVPRcorrection to reflectivity and rainfall estimates from a reflectivity-rainfall algorithm and a polarimetric algorithm showed that this VPR correction method effectively removes the bias that is due to the brightband effect in PPI scans. It performs also satisfactorily in the snow region, removing the decrease of the observed VPR with range but with an overestimation by 2 dB or more. This method does not require a tuning using climatological data, and it can be applied on any algorithm for rainfall estimation. © 2013 American Meteorological Society.

Correction of polarimetric radar reflectivity measurements and rainfall estimates for apparent vertical profile in stratiform rain / John, Kalogiros; Marios N., Anagnostou; Emmanouil N., Anagnostou; Montopoli, Mario; Errico, Picciotti; Marzano, FRANK SILVIO. - In: JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY. - ISSN 1558-8424. - 52:5(2013), pp. 1170-1186. [10.1175/jamc-d-12-0140.1]

Correction of polarimetric radar reflectivity measurements and rainfall estimates for apparent vertical profile in stratiform rain

MONTOPOLI, MARIO;MARZANO, FRANK SILVIO
2013

Abstract

A method for correcting the vertical profile of reflectivity measurements and rainfall estimates (VPR) in plan position indicator (PPI) scans of polarimetric weather radars in the melting layer and the snow layer during stratiform rain is presented. The method for the detection of the boundaries of the melting layer is based on the well-established characteristic of local minimum of copolar correlation coefficient in the melting layer. This method is applied to PPI scans instead of a beam-by-beam basis with the addition of new acceptance criteria adapted to the radar used in this study. An apparent vertical profile of reflectivity measurements, or rainfall estimate, is calculated by averaging the range profiles from all of the available azimuth directions in each PPI scan. The height of each profile is properly scaled with melting-layer boundaries, and the reflectivity, or rainfall estimate, is normalized with respect to its value at the lower boundary of the melting layer. This approach allows variations of the melting-layer boundaries in space and time and variations of the shape of the apparent VPR in time. The application of the VPR correction to reflectivity and rainfall estimates from a reflectivity–rainfall algorithm and a polarimetric algorithm showed that this VPR correction method effectively removes the bias that is due to the brightband effect in PPI scans. It performs also satisfactorily in the snow region, removing the decrease of the observed VPR with range but with an overestimation by 2 dB or more. This method does not require a tuning using climatological data, and it can be applied on any algorithm for rainfall estimation.
2013
A method for correcting the vertical profile of reflectivity measurements and rainfall estimates (VPR) in plan position indicator (PPI) scans of polarimetric weather radars in the melting layer and the snow layer during stratiform rain is presented. The method for the detection of the boundaries of the melting layer is based on the well-established characteristic of local minimum of copolar correlation coefficient in the melting layer. This method is applied to PPI scans instead of a beam-by-beam basis with the addition of new acceptance criteria adapted to the radar used in this study. An apparent vertical profile of reflectivity measurements, or rainfall estimate, is calculated by averaging the range profiles from all of the available azimuth directions in each PPI scan. The height of each profile is properly scaled with melting-layer boundaries, and the reflectivity, or rainfall estimate, is normalized with respect to its value at the lower boundary of the melting layer. This approach allows variations of the melting-layer boundaries in space and time and variations of the shape of the apparentVPRin time. The application of theVPRcorrection to reflectivity and rainfall estimates from a reflectivity-rainfall algorithm and a polarimetric algorithm showed that this VPR correction method effectively removes the bias that is due to the brightband effect in PPI scans. It performs also satisfactorily in the snow region, removing the decrease of the observed VPR with range but with an overestimation by 2 dB or more. This method does not require a tuning using climatological data, and it can be applied on any algorithm for rainfall estimation. © 2013 American Meteorological Society.
x-band; dual-polarization weather radar; rain-path attenuation; disdrometer
01 Pubblicazione su rivista::01a Articolo in rivista
Correction of polarimetric radar reflectivity measurements and rainfall estimates for apparent vertical profile in stratiform rain / John, Kalogiros; Marios N., Anagnostou; Emmanouil N., Anagnostou; Montopoli, Mario; Errico, Picciotti; Marzano, FRANK SILVIO. - In: JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY. - ISSN 1558-8424. - 52:5(2013), pp. 1170-1186. [10.1175/jamc-d-12-0140.1]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/675516
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 22
social impact