We introduce a natural notion of quaternionic map between almost quaternionic manifolds and we prove the following, for maps of rank at least one A map between quaternionic manifolds endowed with the integrable almost twistorial structures is twistorial if and only if it is quaternionic A map between quaternionic manifolds endowed with the nonintegrable almost twistorial structures is twistorial if and only if it is quaternionic and totally-geodesic As an application, we describe all the quaternionic maps between open sets of quaternionic projective spaces

Twistorial maps between quaternionic manifolds / S., Ianus; Marchiafava, Stefano; L., Ornea; R., Pantilie. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - STAMPA. - 9:1(2010), pp. 47-67. [10.2422/2036-2145.2010.1.02]

Twistorial maps between quaternionic manifolds

MARCHIAFAVA, Stefano;
2010

Abstract

We introduce a natural notion of quaternionic map between almost quaternionic manifolds and we prove the following, for maps of rank at least one A map between quaternionic manifolds endowed with the integrable almost twistorial structures is twistorial if and only if it is quaternionic A map between quaternionic manifolds endowed with the nonintegrable almost twistorial structures is twistorial if and only if it is quaternionic and totally-geodesic As an application, we describe all the quaternionic maps between open sets of quaternionic projective spaces
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/6747
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact