We consider the minimization problem min{integral(a)(b) f (t, u'(t)) dt+l (u(a), u(b)); u. is an element of AC([a, b], R-n)}, where f: [a, b] x R-n --> Rboolean OR{+ infinity} is a normal integrand, l: R-n x R-n --> Rboolean OR {+infinity} is a lower semicontinuous function, and AC([a, b], R-n) denotes the space of absolutely continuous functions from [a, b] to R-n. We prove sufficient conditions for the existence of minimizers. We give applications to radially-symmetric variational problems, problems with unilateral constraints on the derivatives, the Newton problem of minimal resistance, models for Martensitic transformations, models in behavioral ecology, and the adiabatic model of the atmosphere.

On a class of non-convex non-coercive Bolza problems with constraints on the derivatives / Crasta, Graziano. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - 118:(2003), pp. 295-325. [10.1023/A:1025447321672]

On a class of non-convex non-coercive Bolza problems with constraints on the derivatives

CRASTA, Graziano
2003

Abstract

We consider the minimization problem min{integral(a)(b) f (t, u'(t)) dt+l (u(a), u(b)); u. is an element of AC([a, b], R-n)}, where f: [a, b] x R-n --> Rboolean OR{+ infinity} is a normal integrand, l: R-n x R-n --> Rboolean OR {+infinity} is a lower semicontinuous function, and AC([a, b], R-n) denotes the space of absolutely continuous functions from [a, b] to R-n. We prove sufficient conditions for the existence of minimizers. We give applications to radially-symmetric variational problems, problems with unilateral constraints on the derivatives, the Newton problem of minimal resistance, models for Martensitic transformations, models in behavioral ecology, and the adiabatic model of the atmosphere.
2003
01 Pubblicazione su rivista::01a Articolo in rivista
On a class of non-convex non-coercive Bolza problems with constraints on the derivatives / Crasta, Graziano. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - 118:(2003), pp. 295-325. [10.1023/A:1025447321672]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/67144
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact