Numerous microRNAs (miRNAs), small non-coding RNAs encoded in the human genome, have been shown to be involved in cancer pathogenesis and progression. There is evidence that some of these miRNAs possess proapoptotic or proliferation promoting roles in the cell by negatively regulating target mRNAs. Oncogenic viruses are able to produce persistent infection, favoring tumor development by deregulating cell proliferation and inhibiting apoptosis. It has been recently suggested that cellular miRNAs may participate in host-virus interactions, influencing viral replication. Many mammalian viruses counteract this cellular antiviral defense by using viral proteins but also by encoding viral miRNAs involved in virus-induced tumorigenesis. Interferons (IFNs) modulate a number of non-coding RNA genes, especially miRNAs, that may be used by mammalian organisms as a mechanism of IFN system to combat viral infection and related diseases. In particular, IFNs might induce specific cellular miRNAs that target viral transcripts thereby using this strategy as part of their effectiveness against invading viruses. Therefore IFNs, interferon stimulated genes and miRNAs could act synergistically as innate response to virus infection to induce a potent non-permissive cellular environment for virus replication and virus-induced cancer. The relevance of this reviewed research topic is clearly related to the observation that although virus infections are responsible of specific tumors, other unidentified genetic alterations are likely involved in the induction of malignant transformation. The identification of such genetic alterations, i.e. miRNA expression in transformed cells, would be of considerable importance for the analysis of the pathogenesis and for the treatment of cancer induced by specific viruses as well as for the advancement of the current knowledge on the molecular mechanisms underlying virus-host interaction. In this respect, we will review also the important, still little explored, roles of miRNAs acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes.

MicroRNAs in virus-induced tumorigenesis and IFN system / G., Fiorucci; M. V., Chiantore; Mangino, Giorgio; Romeo, Giovanna. - In: CYTOKINE & GROWTH FACTOR REVIEWS. - ISSN 1359-6101. - STAMPA. - 26:2(2014), pp. 183-194. [10.1016/j.cytogfr.2014.11.002]

MicroRNAs in virus-induced tumorigenesis and IFN system.

MANGINO, GIORGIO;ROMEO, Giovanna
2014

Abstract

Numerous microRNAs (miRNAs), small non-coding RNAs encoded in the human genome, have been shown to be involved in cancer pathogenesis and progression. There is evidence that some of these miRNAs possess proapoptotic or proliferation promoting roles in the cell by negatively regulating target mRNAs. Oncogenic viruses are able to produce persistent infection, favoring tumor development by deregulating cell proliferation and inhibiting apoptosis. It has been recently suggested that cellular miRNAs may participate in host-virus interactions, influencing viral replication. Many mammalian viruses counteract this cellular antiviral defense by using viral proteins but also by encoding viral miRNAs involved in virus-induced tumorigenesis. Interferons (IFNs) modulate a number of non-coding RNA genes, especially miRNAs, that may be used by mammalian organisms as a mechanism of IFN system to combat viral infection and related diseases. In particular, IFNs might induce specific cellular miRNAs that target viral transcripts thereby using this strategy as part of their effectiveness against invading viruses. Therefore IFNs, interferon stimulated genes and miRNAs could act synergistically as innate response to virus infection to induce a potent non-permissive cellular environment for virus replication and virus-induced cancer. The relevance of this reviewed research topic is clearly related to the observation that although virus infections are responsible of specific tumors, other unidentified genetic alterations are likely involved in the induction of malignant transformation. The identification of such genetic alterations, i.e. miRNA expression in transformed cells, would be of considerable importance for the analysis of the pathogenesis and for the treatment of cancer induced by specific viruses as well as for the advancement of the current knowledge on the molecular mechanisms underlying virus-host interaction. In this respect, we will review also the important, still little explored, roles of miRNAs acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes.
2014
01 Pubblicazione su rivista::01a Articolo in rivista
MicroRNAs in virus-induced tumorigenesis and IFN system / G., Fiorucci; M. V., Chiantore; Mangino, Giorgio; Romeo, Giovanna. - In: CYTOKINE & GROWTH FACTOR REVIEWS. - ISSN 1359-6101. - STAMPA. - 26:2(2014), pp. 183-194. [10.1016/j.cytogfr.2014.11.002]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/670501
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 20
social impact