Proteomics techniques are continuously being developed to further understanding of biology and disease. Many of the pathways that are relevant to disease mechanisms rely on the identification of post-translational modifications (PTMs) such as phosphorylation, acetylation, and glycosylation. Much attention has also been focused on oxidative PTMs which include protein carbonyls, protein nitration, and the incorporation of fatty acids and advanced glycation products to amino acid side chains, amongst others. The introduction of these PTMs in the cell can occur due to the attack of reactive oxygen and nitrogen species (ROS and RNS, respectively) on proteins. ROS and RNS can be present as a result of normal metabolic processes as well as external factors such as UV radiation, disease, and environmental toxins. The imbalance of ROS and RNS with antioxidant cellular defenses leads to a state of oxidative stress, which has been implicated in many diseases. Redox proteomics techniques have been
Proteomics techniques are continuously being developed to further understanding of biology and disease. Many of the pathways that are relevant to disease mechanisms rely on the identification of post-translational modifications (PTMs) such as phosphorylation, acetylation, and glycosylation. Much attention has also been focused on oxidative PTMs which include protein carbonyls, protein nitration, and the incorporation of fatty acids and advanced glycation products to amino acid side chains, amongst others. The introduction of these PTMs in the cell can occur due to the attack of reactive oxygen and nitrogen species (ROS and RNS, respectively) on proteins. ROS and RNS can be present as a result of normal metabolic processes as well as external factors such as UV radiation, disease, and environmental toxins. The imbalance of ROS and RNS with antioxidant cellular defenses leads to a state of oxidative stress, which has been implicated in many diseases. Redox proteomics techniques have been used to characterize oxidative PTMs that result as a part of normal cell signaling processes as well as oxidative stress conditions. This review highlights many of the redox proteomics techniques which are currently available for several oxidative PTMs and brings to the reader's attention the application of redox proteomics for understanding disease pathogenesis in neurodegenerative disorders and others such as cancer, kidney, and heart diseases.
Mass spectrometry and redox proteomics: applications in disease / Butterfield, Da; Gu, L; DI DOMENICO, Fabio; Robinson, Ra. - In: MASS SPECTROMETRY REVIEWS. - ISSN 0277-7037. - 33:(2014), pp. 277-301. [10.1002/mas.21374]
Mass spectrometry and redox proteomics: applications in disease.
DI DOMENICO, FABIO;
2014
Abstract
Proteomics techniques are continuously being developed to further understanding of biology and disease. Many of the pathways that are relevant to disease mechanisms rely on the identification of post-translational modifications (PTMs) such as phosphorylation, acetylation, and glycosylation. Much attention has also been focused on oxidative PTMs which include protein carbonyls, protein nitration, and the incorporation of fatty acids and advanced glycation products to amino acid side chains, amongst others. The introduction of these PTMs in the cell can occur due to the attack of reactive oxygen and nitrogen species (ROS and RNS, respectively) on proteins. ROS and RNS can be present as a result of normal metabolic processes as well as external factors such as UV radiation, disease, and environmental toxins. The imbalance of ROS and RNS with antioxidant cellular defenses leads to a state of oxidative stress, which has been implicated in many diseases. Redox proteomics techniques have beenI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.