In this paper, we introduce a new type of Lyapunov functions In a general framework particularly suitable for the analysis and control of systems with noise and uncertainty. These Lyapunov functions may depend on parameters possibly satisfying differential equations. The main differences with respect to classical Lyapunov functions and classical tools for the design of composite Lyapunov functions are discussed through examples. A design tool for the design of composite filtered Lyapunov functions is given, and examples show improvements over existing literature.
Filtered lyapunov functions and their applications in the stability analysis and control of nonlinear systems / Battilotti, Stefano. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - STAMPA. - 53:1(2008), pp. 434-439. [10.1109/TAC.2007.914269]
Filtered lyapunov functions and their applications in the stability analysis and control of nonlinear systems
BATTILOTTI, Stefano
2008
Abstract
In this paper, we introduce a new type of Lyapunov functions In a general framework particularly suitable for the analysis and control of systems with noise and uncertainty. These Lyapunov functions may depend on parameters possibly satisfying differential equations. The main differences with respect to classical Lyapunov functions and classical tools for the design of composite Lyapunov functions are discussed through examples. A design tool for the design of composite filtered Lyapunov functions is given, and examples show improvements over existing literature.File | Dimensione | Formato | |
---|---|---|---|
Battilotti_Filtered-lyapunov-functions_2008.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
151.09 kB
Formato
Adobe PDF
|
151.09 kB | Adobe PDF | Contatta l'autore |
VE_2008_11573-66794.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
152.56 kB
Formato
Adobe PDF
|
152.56 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.