We study the problem of semiglobally stabilizing uncertain nonlinear system z = Az + Bu + p(1)(z,u,t)u, y =z + p(2)(z,u,t)u, with (A, B) in Brunowski form. We prove that if p(1)(z, u, t)u and p(2)(z, u, t)u are of order greater than 1 and 0, respectively, with "generalized" dilation delta (1)(z, u)=(l(1-n) z(1),.... l(-1)z(n-1),z(n), lu) and uniformly with respect to r, where z(i) is the ith component of z, then we can achieve semiglobal stabilization via arbitrarily bounded linear measurement feedback. (C) 2001 Elsevier Science B.V. All rights reserved.

Generalized dilations and the stabilization of uncertain systems via measurement feedback / Battilotti, Stefano. - In: SYSTEMS & CONTROL LETTERS. - ISSN 0167-6911. - STAMPA. - 43:2(2001), pp. 95-100. [10.1016/s0167-6911(00)00116-x]

Generalized dilations and the stabilization of uncertain systems via measurement feedback

BATTILOTTI, Stefano
2001

Abstract

We study the problem of semiglobally stabilizing uncertain nonlinear system z = Az + Bu + p(1)(z,u,t)u, y =z + p(2)(z,u,t)u, with (A, B) in Brunowski form. We prove that if p(1)(z, u, t)u and p(2)(z, u, t)u are of order greater than 1 and 0, respectively, with "generalized" dilation delta (1)(z, u)=(l(1-n) z(1),.... l(-1)z(n-1),z(n), lu) and uniformly with respect to r, where z(i) is the ith component of z, then we can achieve semiglobal stabilization via arbitrarily bounded linear measurement feedback. (C) 2001 Elsevier Science B.V. All rights reserved.
2001
generalized dilations; measurement feedback; semiglobal stabilization
01 Pubblicazione su rivista::01a Articolo in rivista
Generalized dilations and the stabilization of uncertain systems via measurement feedback / Battilotti, Stefano. - In: SYSTEMS & CONTROL LETTERS. - ISSN 0167-6911. - STAMPA. - 43:2(2001), pp. 95-100. [10.1016/s0167-6911(00)00116-x]
File allegati a questo prodotto
File Dimensione Formato  
Battilotti_Generalizaed_2001.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 108.62 kB
Formato Adobe PDF
108.62 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/66626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact