For a wide class of nonlinear systems with more inputs than outputs, the authors show that the asymptotic stability of suitable dynamics and the asymptotic stabilizability via dynamic stare feedback of suitable systems are necessary to achieve noninteraction and stability via invertible feedback laws. These conditions generalize some recent results obtained for the same class of systems. Some interesting existence conditions are also given, and relationships with the above necessary conditions are identified.

Noninteraction and stability via invertible feedback laws and some existence conditions / Battilotti, Stefano. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 0363-0129. - STAMPA. - 33:1(1995), pp. 107-125. [10.1137/s0363012992239880]

Noninteraction and stability via invertible feedback laws and some existence conditions

BATTILOTTI, Stefano
1995

Abstract

For a wide class of nonlinear systems with more inputs than outputs, the authors show that the asymptotic stability of suitable dynamics and the asymptotic stabilizability via dynamic stare feedback of suitable systems are necessary to achieve noninteraction and stability via invertible feedback laws. These conditions generalize some recent results obtained for the same class of systems. Some interesting existence conditions are also given, and relationships with the above necessary conditions are identified.
1995
invertible feedback laws; noninteraction; stability
01 Pubblicazione su rivista::01a Articolo in rivista
Noninteraction and stability via invertible feedback laws and some existence conditions / Battilotti, Stefano. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 0363-0129. - STAMPA. - 33:1(1995), pp. 107-125. [10.1137/s0363012992239880]
File allegati a questo prodotto
File Dimensione Formato  
Battilotti_Nointeraction_1995.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/66560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact