In this paper, following a partitioning around medoids approach, a fuzzy clustering model for interval-valued data, i.e., FCMd-ID, is introduced. Successively, for avoiding the disruptive effects of possible outlier interval-valued data in the clustering process, a robust fuzzy clustering model with a trimming rule, called Trimmed Fuzzy (Formula presented.)-medoids for interval-valued data (TrFCMd-ID), is proposed. In order to show the good performances of the robust clustering model, a simulation study and two applications are provided. © 2014 Springer-Verlag Berlin Heidelberg.
Trimmed fuzzy clustering for interval-valued data / D'Urso, Pierpaolo; Livia De, Giovanni; Massari, Riccardo. - In: ADVANCES IN DATA ANALYSIS AND CLASSIFICATION. - ISSN 1862-5347. - 9:(2015), pp. 21-40. [10.1007/s11634-014-0169-3]
Trimmed fuzzy clustering for interval-valued data
D'URSO, Pierpaolo;MASSARI, Riccardo
2015
Abstract
In this paper, following a partitioning around medoids approach, a fuzzy clustering model for interval-valued data, i.e., FCMd-ID, is introduced. Successively, for avoiding the disruptive effects of possible outlier interval-valued data in the clustering process, a robust fuzzy clustering model with a trimming rule, called Trimmed Fuzzy (Formula presented.)-medoids for interval-valued data (TrFCMd-ID), is proposed. In order to show the good performances of the robust clustering model, a simulation study and two applications are provided. © 2014 Springer-Verlag Berlin Heidelberg.File | Dimensione | Formato | |
---|---|---|---|
2015ADAC.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
347.67 kB
Formato
Adobe PDF
|
347.67 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.