Self-Organizing Maps (SOMs) consist of a set of neurons arranged in such a way that there are neighbourhood relationships among neurons. Following an unsupervised learning procedure, the input space is divided into regions with common nearest neuron (vector quantization), allowing clustering of the input vectors. In this paper, we propose an extension of the SOMs for data imprecisely observed (Self-Organizing Maps for imprecise data, SOMs-ID). The learning algorithm is based on two distances for imprecise data. In order to illustrate the main features and to compare the performances of the proposed method, we provide a simulation study and different substantive applications. (C) 2013 Elsevier B.V. All rights reserved.

Self-Organizing Maps for imprecise data / D'Urso, Pierpaolo; Livia De, Giovanni; Massari, Riccardo. - In: FUZZY SETS AND SYSTEMS. - ISSN 0165-0114. - 237:237(2014), pp. 63-89. [10.1016/j.fss.2013.09.011]

Self-Organizing Maps for imprecise data

D'URSO, Pierpaolo;MASSARI, Riccardo
2014

Abstract

Self-Organizing Maps (SOMs) consist of a set of neurons arranged in such a way that there are neighbourhood relationships among neurons. Following an unsupervised learning procedure, the input space is divided into regions with common nearest neuron (vector quantization), allowing clustering of the input vectors. In this paper, we propose an extension of the SOMs for data imprecisely observed (Self-Organizing Maps for imprecise data, SOMs-ID). The learning algorithm is based on two distances for imprecise data. In order to illustrate the main features and to compare the performances of the proposed method, we provide a simulation study and different substantive applications. (C) 2013 Elsevier B.V. All rights reserved.
2014
soms for imprecise data; vector quantization for imprecise data; distance measures for imprecise data; imprecise data; fuzziness
01 Pubblicazione su rivista::01a Articolo in rivista
Self-Organizing Maps for imprecise data / D'Urso, Pierpaolo; Livia De, Giovanni; Massari, Riccardo. - In: FUZZY SETS AND SYSTEMS. - ISSN 0165-0114. - 237:237(2014), pp. 63-89. [10.1016/j.fss.2013.09.011]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/663828
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact