In this paper, we discuss the problem of regression analysis in a fuzzy domain. By considering an iterative Weighted Least Squares estimation approach, we propose a general linear regression model for studying the dependence of a general class of fuzzy response variable, i.e., L R2 fuzzy variable or trapezoidal fuzzy variable, on a set of crisp or L R2 fuzzy explanatory variables. We also show some theoretical properties and a suitable generalization of the determination coefficient in order to investigate the goodness of fit of the regression model. Furthermore, we discuss some theoretical issues and an assessment of imprecision of the regression function. Finally, we suggest a robust version of the fuzzy regression model based on the Least Median Squares estimation approach which is able to neutralize and/or smooth the disruptive effects of possible crisp or fuzzy outliers in the estimation process. A simulation study and two empirical applications are presented. © Sapienza Università di Roma 2013.

Weighted Least Squares and Least Median Squares estimation for the fuzzy linear regression analysis / D'Urso, Pierpaolo; Massari, Riccardo. - In: METRON. - ISSN 0026-1424. - 71:3(2013), pp. 279-306. [10.1007/s40300-013-0025-9]

Weighted Least Squares and Least Median Squares estimation for the fuzzy linear regression analysis

D'URSO, Pierpaolo;MASSARI, Riccardo
2013

Abstract

In this paper, we discuss the problem of regression analysis in a fuzzy domain. By considering an iterative Weighted Least Squares estimation approach, we propose a general linear regression model for studying the dependence of a general class of fuzzy response variable, i.e., L R2 fuzzy variable or trapezoidal fuzzy variable, on a set of crisp or L R2 fuzzy explanatory variables. We also show some theoretical properties and a suitable generalization of the determination coefficient in order to investigate the goodness of fit of the regression model. Furthermore, we discuss some theoretical issues and an assessment of imprecision of the regression function. Finally, we suggest a robust version of the fuzzy regression model based on the Least Median Squares estimation approach which is able to neutralize and/or smooth the disruptive effects of possible crisp or fuzzy outliers in the estimation process. A simulation study and two empirical applications are presented. © Sapienza Università di Roma 2013.
2013
weighted least squares (wls); robust fuzzy linear regression; fuzzy input/output data; least median squares (lms); fuzzy linear regression analysis
01 Pubblicazione su rivista::01a Articolo in rivista
Weighted Least Squares and Least Median Squares estimation for the fuzzy linear regression analysis / D'Urso, Pierpaolo; Massari, Riccardo. - In: METRON. - ISSN 0026-1424. - 71:3(2013), pp. 279-306. [10.1007/s40300-013-0025-9]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/663825
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? ND
social impact