This research addresses the problem of the optimal interception of an optimally evasive orbital target by a pursuing spacecraft or missile. The time for interception is to be minimized by the pursuing space vehicle and maximized by the evading target. This problem is modeled as a two-sided optimization problem, i.e. as a two-player zero-sum differential game. This work presents a recently developed method, termed "semi-direct collocation with nonlinear programming", devoted to the numerical solution of dynamic games. The method is based on the formal conversion of the two-sided optimization problem into a single-objective one, by employing the analytical necessary conditions for optimality related to one of the two players. An approximate, first attempt solution for the method is provided through the use of a genetic algorithm in the preprocessing phase. Three qualitatively different cases are considered. In the first example the pursuer and the evader are represented by two spacecraft orbiting Earth in two distinct orbits. The second and third case involve two missiles, and a missile that pursues an orbiting spacecraft, respectively. The numerical results achieved in this work testify to the robustness and effectiveness of the method also in solving large, complex, three-dimensional problems.

Optimal Interception of Optimally Evasive Spacecraft / Pontani, Mauro; B. A., Conway. - 6:(2009), pp. 4378-4391. (Intervento presentato al convegno 60th International Astronautical Congress tenutosi a Daejeon; Korea, Republic of).

Optimal Interception of Optimally Evasive Spacecraft

PONTANI, MAURO;
2009

Abstract

This research addresses the problem of the optimal interception of an optimally evasive orbital target by a pursuing spacecraft or missile. The time for interception is to be minimized by the pursuing space vehicle and maximized by the evading target. This problem is modeled as a two-sided optimization problem, i.e. as a two-player zero-sum differential game. This work presents a recently developed method, termed "semi-direct collocation with nonlinear programming", devoted to the numerical solution of dynamic games. The method is based on the formal conversion of the two-sided optimization problem into a single-objective one, by employing the analytical necessary conditions for optimality related to one of the two players. An approximate, first attempt solution for the method is provided through the use of a genetic algorithm in the preprocessing phase. Three qualitatively different cases are considered. In the first example the pursuer and the evader are represented by two spacecraft orbiting Earth in two distinct orbits. The second and third case involve two missiles, and a missile that pursues an orbiting spacecraft, respectively. The numerical results achieved in this work testify to the robustness and effectiveness of the method also in solving large, complex, three-dimensional problems.
2009
60th International Astronautical Congress
Numerical results; Numerical solution; Optimization problems
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Optimal Interception of Optimally Evasive Spacecraft / Pontani, Mauro; B. A., Conway. - 6:(2009), pp. 4378-4391. (Intervento presentato al convegno 60th International Astronautical Congress tenutosi a Daejeon; Korea, Republic of).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/659680
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact