Multistage launch vehicles are employed to place spacecraft and satellites in their operational orbits. Trajectory optimization of their ascending path is aimed at defining the maximum payload mass at orbit injection, for specified structural, propulsive, and aerodynamic data. This work describes and applies a method for optimizing the ascending path of the upper stage of a specified launch vehicle through satisfaction of the necessary conditions for optimality. The method at hand utilizes a recently introduced heuristic technique, that is, the particle swarm algorithm, to find the optimal ascent trajectory. This methodology is very intuitive and relatively easy to program. The second-order conditions, that is, the Clebsch-Legendre inequality and the conjugate point condition, are proven to hold, and their fulfillment enforces optimality of the solution. Availability of an optimal solution to the second order is an essential premise for the possible development of an efficient neighboring optimal guidance.

Ascent trajectories of multistage launch vehicles. Numerical optimization with second-order conditions verification / Pontani, Mauro; G., Cecchetti. - In: INTERNATIONAL SCHOLARLY RESEARCH NOTICES. - ISSN 2356-7872. - 2013:(2014). [10.1155/2013/498765]

Ascent trajectories of multistage launch vehicles. Numerical optimization with second-order conditions verification

PONTANI, MAURO
;
2014

Abstract

Multistage launch vehicles are employed to place spacecraft and satellites in their operational orbits. Trajectory optimization of their ascending path is aimed at defining the maximum payload mass at orbit injection, for specified structural, propulsive, and aerodynamic data. This work describes and applies a method for optimizing the ascending path of the upper stage of a specified launch vehicle through satisfaction of the necessary conditions for optimality. The method at hand utilizes a recently introduced heuristic technique, that is, the particle swarm algorithm, to find the optimal ascent trajectory. This methodology is very intuitive and relatively easy to program. The second-order conditions, that is, the Clebsch-Legendre inequality and the conjugate point condition, are proven to hold, and their fulfillment enforces optimality of the solution. Availability of an optimal solution to the second order is an essential premise for the possible development of an efficient neighboring optimal guidance.
2014
launch vehicles; ascent trajectories; necessary conditions for optimality; second-order conditions for optimality
01 Pubblicazione su rivista::01a Articolo in rivista
Ascent trajectories of multistage launch vehicles. Numerical optimization with second-order conditions verification / Pontani, Mauro; G., Cecchetti. - In: INTERNATIONAL SCHOLARLY RESEARCH NOTICES. - ISSN 2356-7872. - 2013:(2014). [10.1155/2013/498765]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/659662
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact