We construct sequences of sign-changing solutions for some conformany invariant semilinear elliptic equation which is defined S-n, when n >= 4. The solutions we obtain have large energy and concentrate along some special submanifolds of S-n. For example, for n >= 4 we obtain sequences of solutions whose energy concentrates along one great circle or finitely many great circles which are linked to each other (and they correspond to Hopf links embedded in S-3 x {0) subset of S-n). In dimension n >= 5 we obtain sequences of solutions whose energy concentrates along a two-dimensional torus (which corresponds to a Clifford torus embedded in S-3 x {0} subset of S-n).

Torus action on S-n and sign-changing solutions for conformally invariant equations / M., Del Pino; M., Musso; F., Pacard; Pistoia, Angela. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - STAMPA. - 12:1(2013), pp. 209-237.

Torus action on S-n and sign-changing solutions for conformally invariant equations

PISTOIA, Angela
2013

Abstract

We construct sequences of sign-changing solutions for some conformany invariant semilinear elliptic equation which is defined S-n, when n >= 4. The solutions we obtain have large energy and concentrate along some special submanifolds of S-n. For example, for n >= 4 we obtain sequences of solutions whose energy concentrates along one great circle or finitely many great circles which are linked to each other (and they correspond to Hopf links embedded in S-3 x {0) subset of S-n). In dimension n >= 5 we obtain sequences of solutions whose energy concentrates along a two-dimensional torus (which corresponds to a Clifford torus embedded in S-3 x {0} subset of S-n).
2013
01 Pubblicazione su rivista::01a Articolo in rivista
Torus action on S-n and sign-changing solutions for conformally invariant equations / M., Del Pino; M., Musso; F., Pacard; Pistoia, Angela. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - STAMPA. - 12:1(2013), pp. 209-237.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/65734
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 48
social impact