The need of energy security and environment sustainability drives toward the development of energy technology in order to enhance the performance of internal combustion engines. Gas sensors play a key role for controlling the fuel oxygen ratio and monitoring the pollution emissions. The perovskite-type oxides can be synthesized for an extremely wide variety of combinations of chemical elements, allowing to design materials with suitable properties for sensing application. Lanthanum strontium ferrites, such asLa0.7Sr0.3FeO3, are suitable oxygen sensing materials with temperature-independence conductivity, but they have low chemical stability under reducing conditions. The addition of aluminum into the perovskite structure improves the material properties in order to develop suitable oxygen sensing probes for lean burn engine control systems. Perovskite-type oxides with formula(La0.7Sr0.3)(AlxFe1−x)O3 was synthesized by the citrate-nitrate combustion synthesis method. XRD analyses, show that it was synthesized a phase-pure powder belonging to the perovskite structure. Aluminum affects both the unit cell parameters, by shrinking the unit cell, and the powder morphology, by promoting the synthesis of particles with small crystallite size and large specific surface area. The partial substitution of iron with aluminum improves the chemical stability under reducing gas conditions and modulates the oxygen sensitivity by affecting the relative amount of Fe4+ and Fe3+, as confirmed from TPR profiles. In the same time, the addition of aluminum does not affects the temperature-independent properties of lanthanum strontium ferrites. Indeed, the electrical measurements show that (La0.7Sr0.3)(AlxFe1−x)O3 perovskites have temperature-independence conductivity from 900 K.
Temperature-independent sensors based on perovskite-type oxides / Zaza, Fabio; S., Frangini; J., Leoncini; I., Luisetto; A., Masci; Pasquali, Mauro; S., Tuti. - STAMPA. - (2013), pp. 53-61. (Intervento presentato al convegno AIP Conf. tenutosi a Rome nel 18–20 September 2013) [org/10.1063/1.4883042].
Temperature-independent sensors based on perovskite-type oxides
ZAZA, FABIO;PASQUALI, Mauro;
2013
Abstract
The need of energy security and environment sustainability drives toward the development of energy technology in order to enhance the performance of internal combustion engines. Gas sensors play a key role for controlling the fuel oxygen ratio and monitoring the pollution emissions. The perovskite-type oxides can be synthesized for an extremely wide variety of combinations of chemical elements, allowing to design materials with suitable properties for sensing application. Lanthanum strontium ferrites, such asLa0.7Sr0.3FeO3, are suitable oxygen sensing materials with temperature-independence conductivity, but they have low chemical stability under reducing conditions. The addition of aluminum into the perovskite structure improves the material properties in order to develop suitable oxygen sensing probes for lean burn engine control systems. Perovskite-type oxides with formula(La0.7Sr0.3)(AlxFe1−x)O3 was synthesized by the citrate-nitrate combustion synthesis method. XRD analyses, show that it was synthesized a phase-pure powder belonging to the perovskite structure. Aluminum affects both the unit cell parameters, by shrinking the unit cell, and the powder morphology, by promoting the synthesis of particles with small crystallite size and large specific surface area. The partial substitution of iron with aluminum improves the chemical stability under reducing gas conditions and modulates the oxygen sensitivity by affecting the relative amount of Fe4+ and Fe3+, as confirmed from TPR profiles. In the same time, the addition of aluminum does not affects the temperature-independent properties of lanthanum strontium ferrites. Indeed, the electrical measurements show that (La0.7Sr0.3)(AlxFe1−x)O3 perovskites have temperature-independence conductivity from 900 K.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.