AIMS: MicroRNAs are a class of negative regulators of gene expression, which have been shown to be involved in the development of endocrine pancreas and in the regulation of insulin secretion. Since type 2 diabetes (T2D) is characterized by beta cell dysfunction, we aimed at evaluating expression levels of miR-124a and miR-375, both involved in the control of beta cell function, in human pancreatic islets obtained from T2D and from age-matched non-diabetic organ donors. METHODS: We analyzed miR-124a and miR-375 expression by real-time qRT-PCR in human pancreatic islets and evaluated the potential role of miR-124a by overexpressing or silencing such miRNA in MIN6 pseudoislets. RESULTS: We identified a major miR-124a hyperexpression in T2D human pancreatic islets with no differential expression of miR-375. Of note, miR-124a overexpression in MIN6 pseudoislets resulted in an impaired glucose-induced insulin secretion. In addition, miR-124a silencing in MIN6 pseudoislets resulted in increased expression of predicted target genes (Mtpn, Foxa2, Flot2, Akt3, Sirt1 and NeuroD1) involved in beta cell function. For Mtpn and Foxa2, we further demonstrated the actual binding of miR-124a to their 3UTR sequences by luciferase assay. CONCLUSIONS: We uncovered a major hyperexpression of miR-124a in T2D islets, whose silencing resulted in increased expression of target genes of major importance for beta cell function and whose overexpression impaired glucose-stimulated insulin secretion, leading to the hypothesis that an altered miR-124a expression may contribute to beta cell dysfunction in type 2 diabetes.

MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion / Sebastiani, G; Po, Agnese; Miele, Evelina; Ventriglia, G; Ceccarelli, E; Bugliani, M; Marselli, L; Marchetti, Paolo; Gulino, Alberto; Ferretti, Elisabetta; Dotta, F.. - In: ACTA DIABETOLOGICA. - ISSN 0940-5429. - STAMPA. - 52:(2015), pp. 523-530. [10.1007/s00592-014-0675-y]

MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion.

PO, AGNESE;MIELE, EVELINA;MARCHETTI, PAOLO;GULINO, Alberto;FERRETTI, ELISABETTA;
2015

Abstract

AIMS: MicroRNAs are a class of negative regulators of gene expression, which have been shown to be involved in the development of endocrine pancreas and in the regulation of insulin secretion. Since type 2 diabetes (T2D) is characterized by beta cell dysfunction, we aimed at evaluating expression levels of miR-124a and miR-375, both involved in the control of beta cell function, in human pancreatic islets obtained from T2D and from age-matched non-diabetic organ donors. METHODS: We analyzed miR-124a and miR-375 expression by real-time qRT-PCR in human pancreatic islets and evaluated the potential role of miR-124a by overexpressing or silencing such miRNA in MIN6 pseudoislets. RESULTS: We identified a major miR-124a hyperexpression in T2D human pancreatic islets with no differential expression of miR-375. Of note, miR-124a overexpression in MIN6 pseudoislets resulted in an impaired glucose-induced insulin secretion. In addition, miR-124a silencing in MIN6 pseudoislets resulted in increased expression of predicted target genes (Mtpn, Foxa2, Flot2, Akt3, Sirt1 and NeuroD1) involved in beta cell function. For Mtpn and Foxa2, we further demonstrated the actual binding of miR-124a to their 3UTR sequences by luciferase assay. CONCLUSIONS: We uncovered a major hyperexpression of miR-124a in T2D islets, whose silencing resulted in increased expression of target genes of major importance for beta cell function and whose overexpression impaired glucose-stimulated insulin secretion, leading to the hypothesis that an altered miR-124a expression may contribute to beta cell dysfunction in type 2 diabetes.
2015
01 Pubblicazione su rivista::01a Articolo in rivista
MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion / Sebastiani, G; Po, Agnese; Miele, Evelina; Ventriglia, G; Ceccarelli, E; Bugliani, M; Marselli, L; Marchetti, Paolo; Gulino, Alberto; Ferretti, Elisabetta; Dotta, F.. - In: ACTA DIABETOLOGICA. - ISSN 0940-5429. - STAMPA. - 52:(2015), pp. 523-530. [10.1007/s00592-014-0675-y]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/656680
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 67
  • Scopus 119
  • ???jsp.display-item.citation.isi??? 107
social impact