We consider a classical system of point particles interacting by means of a short range potential. We prove that, in the low-density (Boltzmann-Grad) limit, the system behaves, for short times, as predicted by the associated Boltzmann equation. This is a revisitation and an extension of the thesis of King [9] (that appeared after the well-known result of Lanford [10] for hard spheres) and of a recent paper by Gallagher et al. [5]. Our analysis applies to any stable and smooth potential. In the case of repulsive potentials (with no attractive parts), we estimate explicitly the rate of convergence.

On the validity of the Boltzmann equation for short range potentials / Pulvirenti, Mario; Saffirio, Chiara; Simonella, Sergio. - In: REVIEWS IN MATHEMATICAL PHYSICS. - ISSN 0129-055X. - STAMPA. - 26:2(2014), pp. 1450001-1450001-64. [10.1142/s0129055x14500019]

On the validity of the Boltzmann equation for short range potentials

PULVIRENTI, Mario;SAFFIRIO, Chiara;Sergio Simonella
2014

Abstract

We consider a classical system of point particles interacting by means of a short range potential. We prove that, in the low-density (Boltzmann-Grad) limit, the system behaves, for short times, as predicted by the associated Boltzmann equation. This is a revisitation and an extension of the thesis of King [9] (that appeared after the well-known result of Lanford [10] for hard spheres) and of a recent paper by Gallagher et al. [5]. Our analysis applies to any stable and smooth potential. In the case of repulsive potentials (with no attractive parts), we estimate explicitly the rate of convergence.
2014
boltzmann equation; kinetic theory; bbgky hierarchy; scaling limit
01 Pubblicazione su rivista::01a Articolo in rivista
On the validity of the Boltzmann equation for short range potentials / Pulvirenti, Mario; Saffirio, Chiara; Simonella, Sergio. - In: REVIEWS IN MATHEMATICAL PHYSICS. - ISSN 0129-055X. - STAMPA. - 26:2(2014), pp. 1450001-1450001-64. [10.1142/s0129055x14500019]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/654422
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 56
social impact