In this paper a diffuse-interface model featuring phase change, transition to supercritical conditions, thermal conduction, compressibility effects and shock wave propagation is exploited to deal with the dynamics of a cavitation bubble. At variance with previous descriptions, the model is uniformly valid for all phases (liquid, vapor and supercritical) and phase transitions involved, allowing to describe the non-equilibrium processes ongoing during the collapse. As consequence of this unitary description, rather unexpectedly for pure vapor bubbles, the numerical experiments show that the collapse is accompanied by the emission of a strong shock wave in the liquid and by the oscillation of the bubble that periodically disappears and reappears, due to transition to super/sub critical conditions. The mechanism of shock wave formation is strongly related to the transition of the vapor to supercritical state, with a progressive steepening of the compression wave to form the shock which is eventually reflected as an outward propagating wave in the liquid.

Shock wave formation in the collapse of a vapor nano-bubble / Magaletti, Francesco; Marino, Luca; Casciola, Carlo Massimo. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - STAMPA. - 114:6(2015), pp. 064501-1-064501-5. [10.1103/PhysRevLett.114.064501]

Shock wave formation in the collapse of a vapor nano-bubble

MAGALETTI, FRANCESCO;MARINO, Luca;CASCIOLA, Carlo Massimo
2015

Abstract

In this paper a diffuse-interface model featuring phase change, transition to supercritical conditions, thermal conduction, compressibility effects and shock wave propagation is exploited to deal with the dynamics of a cavitation bubble. At variance with previous descriptions, the model is uniformly valid for all phases (liquid, vapor and supercritical) and phase transitions involved, allowing to describe the non-equilibrium processes ongoing during the collapse. As consequence of this unitary description, rather unexpectedly for pure vapor bubbles, the numerical experiments show that the collapse is accompanied by the emission of a strong shock wave in the liquid and by the oscillation of the bubble that periodically disappears and reappears, due to transition to super/sub critical conditions. The mechanism of shock wave formation is strongly related to the transition of the vapor to supercritical state, with a progressive steepening of the compression wave to form the shock which is eventually reflected as an outward propagating wave in the liquid.
2015
bubbles; cavitation; bjerknes force
01 Pubblicazione su rivista::01a Articolo in rivista
Shock wave formation in the collapse of a vapor nano-bubble / Magaletti, Francesco; Marino, Luca; Casciola, Carlo Massimo. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - STAMPA. - 114:6(2015), pp. 064501-1-064501-5. [10.1103/PhysRevLett.114.064501]
File allegati a questo prodotto
File Dimensione Formato  
Magaletti_preprint_Shock-formation_2014.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 926.28 kB
Formato Adobe PDF
926.28 kB Adobe PDF
Magaletti_Shock-formation_2015.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 603.64 kB
Formato Adobe PDF
603.64 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/650616
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 56
social impact