Abstract. A class of minimal almost complex submanifolds of a Riemannian manifold M˜ 4n with a parallel quaternionic structure Q, in particular of a 4-dimensional oriented Riemannian manifold, is studied. A notion of Kähler submanifold is defined. Any Kähler submanifold is pluriminimal. In the case of a quaternionic Kähler manifold M˜ 4n of non zero scalar curvature, in particular, when M˜ 4 is an Einstein, non Ricci-flat, anti-self-dual 4-manifold, we give a twistor construction of Kähler submanifolds M2n of maximal possible dimension 2n.More precisely,we prove that any such Kähler submanifold M2n of M˜ 4n is the projection of a holomorphic Legendrian submanifold L2n ? Z of the twistor space (Z,H) of M˜ 4n , considered as a complex contact manifold with the natural holomorphic contact structure H ? TZ. Any Legendrian submanifold of the twistor space Z is defined by a generating holomorphic function. This is a natural generalization of Bryant’s construction of superminimal surfaces in S4 = HP1. Mathematics Subject Classification (1991). Primary: 53C40; Secondary: 53C55

A twistor construction of Kaehler submanifolds of a quaternionic Kaehler manifold / D. V., Alekseevsky; Marchiafava, Stefano. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 184:(2005), pp. 53-74. [10.1007/s10231-003-0089-x]

A twistor construction of Kaehler submanifolds of a quaternionic Kaehler manifold

MARCHIAFAVA, Stefano
2005

Abstract

Abstract. A class of minimal almost complex submanifolds of a Riemannian manifold M˜ 4n with a parallel quaternionic structure Q, in particular of a 4-dimensional oriented Riemannian manifold, is studied. A notion of Kähler submanifold is defined. Any Kähler submanifold is pluriminimal. In the case of a quaternionic Kähler manifold M˜ 4n of non zero scalar curvature, in particular, when M˜ 4 is an Einstein, non Ricci-flat, anti-self-dual 4-manifold, we give a twistor construction of Kähler submanifolds M2n of maximal possible dimension 2n.More precisely,we prove that any such Kähler submanifold M2n of M˜ 4n is the projection of a holomorphic Legendrian submanifold L2n ? Z of the twistor space (Z,H) of M˜ 4n , considered as a complex contact manifold with the natural holomorphic contact structure H ? TZ. Any Legendrian submanifold of the twistor space Z is defined by a generating holomorphic function. This is a natural generalization of Bryant’s construction of superminimal surfaces in S4 = HP1. Mathematics Subject Classification (1991). Primary: 53C40; Secondary: 53C55
superminimal surfaces; quaternionic Kähler manifolds; Kähler submanifolds
01 Pubblicazione su rivista::01a Articolo in rivista
A twistor construction of Kaehler submanifolds of a quaternionic Kaehler manifold / D. V., Alekseevsky; Marchiafava, Stefano. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 184:(2005), pp. 53-74. [10.1007/s10231-003-0089-x]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/6494
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact