We introduce a multivariate hidden Markov model to jointly cluster time-series observations with different support, i.e. circular and linear. Relying on the general projected normal distribution, our approach allows for bimodal and/or skewed cluster-specific distributions for the circular variable. Furthermore, we relax the independence assumption between the circular and linear components observed at the same time. Such an assumption is generally used to alleviate the computational burden involved in the parameter estimation step, but it is hard to justify in empirical applications. We carry out a simulation study using different data-generation schemes to investigate model behavior, focusing on well recovering the hidden structure. Finally, the model is used to fit a real data example on a bivariate time series of wind speed and direction.

Bayesian Hidden Markov Modelling Using Circular-Linear General Projected Normal Distribution / Gianluca, Mastrantonio; Antonello, Maruotti; JONA LASINIO, Giovanna. - In: ENVIRONMETRICS. - ISSN 1180-4009. - STAMPA. - 26:(2015), pp. 145-158. [10.1002/env.2326]

Bayesian Hidden Markov Modelling Using Circular-Linear General Projected Normal Distribution

JONA LASINIO, Giovanna
Membro del Collaboration Group
2015

Abstract

We introduce a multivariate hidden Markov model to jointly cluster time-series observations with different support, i.e. circular and linear. Relying on the general projected normal distribution, our approach allows for bimodal and/or skewed cluster-specific distributions for the circular variable. Furthermore, we relax the independence assumption between the circular and linear components observed at the same time. Such an assumption is generally used to alleviate the computational burden involved in the parameter estimation step, but it is hard to justify in empirical applications. We carry out a simulation study using different data-generation schemes to investigate model behavior, focusing on well recovering the hidden structure. Finally, the model is used to fit a real data example on a bivariate time series of wind speed and direction.
2015
directional data; Hidden Markov models; Markov chain Monte Carlo; wind data; multivariate time series; projected normal distribution
01 Pubblicazione su rivista::01a Articolo in rivista
Bayesian Hidden Markov Modelling Using Circular-Linear General Projected Normal Distribution / Gianluca, Mastrantonio; Antonello, Maruotti; JONA LASINIO, Giovanna. - In: ENVIRONMETRICS. - ISSN 1180-4009. - STAMPA. - 26:(2015), pp. 145-158. [10.1002/env.2326]
File allegati a questo prodotto
File Dimensione Formato  
Mastrantonio_Bayesian-hidden-Markov_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Contatta l'autore
Mastrantonio_Bayesian-hidden-Markov_2015.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.51 MB
Formato Unknown
1.51 MB Unknown

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/649194
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact