The recovery of materials from Demolition Waste (DW) represents one of the main target of the recycling industry and the its characterization is important in order to set up efficient sorting and/or quality control systems. End-Of-Life (EOL) concrete materials identification is necessary to maximize DW conversion into useful secondary raw materials, so it is fundamental to develop strategies for the implementation of an automatic recognition system of the recovered products. In this paper, HyperSpectral Imaging (HSI) technique was applied in order to detect DW composition. Hyperspectral images were acquired by a laboratory device equipped with a HSI sensing device working in the near infrared range (1000-1700 nm): NIR Spectral Camera™, embedding an ImSpector™ N17E (SPECIM Ltd, Finland). Acquired spectral data were analyzed adopting the PLS-Toolbox (Version 7.5, Eigenvector Research, Inc.) under Matlab® environment (Version 7.11.1, The Mathworks, Inc.), applying different chemometric methods: Principal Component Analysis (PCA) for exploratory data approach and Partial Least Square- Discriminant Analysis (PLS-DA) to build classification models. Results showed that it is possible to recognize DW materials, distinguishing recycled aggregates from contaminants (e.g. bricks, gypsum, plastics, wood, foam, etc.). The developed procedure is cheap, fast and non-destructive: it could be used to make some steps of the recycling process more efficient and less expensive.

Automatic detection and classification of EOL-concrete and resulting recovered products by hyperspectral imaging / Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia. - STAMPA. - 9106 Article number 91060D:(2014), pp. 1-14. (Intervento presentato al convegno SPIE Defence, Security and Sensing tenutosi a Baltimore, MD; United States nel 05-06 Maggio 2014) [10.1117/12.2049399].

Automatic detection and classification of EOL-concrete and resulting recovered products by hyperspectral imaging

PALMIERI, ROBERTA;BONIFAZI, Giuseppe;SERRANTI, Silvia
2014

Abstract

The recovery of materials from Demolition Waste (DW) represents one of the main target of the recycling industry and the its characterization is important in order to set up efficient sorting and/or quality control systems. End-Of-Life (EOL) concrete materials identification is necessary to maximize DW conversion into useful secondary raw materials, so it is fundamental to develop strategies for the implementation of an automatic recognition system of the recovered products. In this paper, HyperSpectral Imaging (HSI) technique was applied in order to detect DW composition. Hyperspectral images were acquired by a laboratory device equipped with a HSI sensing device working in the near infrared range (1000-1700 nm): NIR Spectral Camera™, embedding an ImSpector™ N17E (SPECIM Ltd, Finland). Acquired spectral data were analyzed adopting the PLS-Toolbox (Version 7.5, Eigenvector Research, Inc.) under Matlab® environment (Version 7.11.1, The Mathworks, Inc.), applying different chemometric methods: Principal Component Analysis (PCA) for exploratory data approach and Partial Least Square- Discriminant Analysis (PLS-DA) to build classification models. Results showed that it is possible to recognize DW materials, distinguishing recycled aggregates from contaminants (e.g. bricks, gypsum, plastics, wood, foam, etc.). The developed procedure is cheap, fast and non-destructive: it could be used to make some steps of the recycling process more efficient and less expensive.
2014
SPIE Defence, Security and Sensing
demolition waste, End-Of-Life (EOL) concrete, hyperspectral imaging, quality control, recycling
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Automatic detection and classification of EOL-concrete and resulting recovered products by hyperspectral imaging / Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia. - STAMPA. - 9106 Article number 91060D:(2014), pp. 1-14. (Intervento presentato al convegno SPIE Defence, Security and Sensing tenutosi a Baltimore, MD; United States nel 05-06 Maggio 2014) [10.1117/12.2049399].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/645696
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 10
social impact