Aim of this paper is to show the connection between the theory of expansions in non-integer bases and discrete control systems. This idea is supported by an example of application, in the framework of robotics. We show how a model of multi-phalanx self-similar robot hand may be studied by means of results and techniques coming from non-standard numeration systems and related tools, like Iterated Function Systems (IFS) and, more generally, fractal geometry.

Discrete asymptotic reachability via expansions in non-integer bases / Lai, ANNA CHIARA; Loreti, Paola. - 2:(2012), pp. 360-365. (Intervento presentato al convegno 9th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2012 tenutosi a Rome; Italy nel 28 July 2012 through 31 July 2012) [10.5220/0004092403600365].

Discrete asymptotic reachability via expansions in non-integer bases

LAI, ANNA CHIARA;LORETI, Paola
2012

Abstract

Aim of this paper is to show the connection between the theory of expansions in non-integer bases and discrete control systems. This idea is supported by an example of application, in the framework of robotics. We show how a model of multi-phalanx self-similar robot hand may be studied by means of results and techniques coming from non-standard numeration systems and related tools, like Iterated Function Systems (IFS) and, more generally, fractal geometry.
2012
9th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2012
expansion in non-integer bases; discrete control theory; robot hand
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Discrete asymptotic reachability via expansions in non-integer bases / Lai, ANNA CHIARA; Loreti, Paola. - 2:(2012), pp. 360-365. (Intervento presentato al convegno 9th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2012 tenutosi a Rome; Italy nel 28 July 2012 through 31 July 2012) [10.5220/0004092403600365].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/645596
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact