Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent potential approximation (CPA) suited for describing (i) the diffusive (hopping) motion of classical particles in a random environment, and (ii) the vibrational properties of materials with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity (conductivity) is shown to correspond to the boson peak in the vibrational model. The anomalous regimes above the crossover are governed by a complex, frequency-dependent self-energy. The boson peak is shown to be stronger for non-Gaussian disorder than for Gaussian disorder. We demonstrate that the low-frequency nonanalyticity of the off-lattice version of the CPA leads to the correct long-time tails of the velocity autocorrelation function in the hopping problem and to low-frequency Rayleigh scattering in the wave problem. Furthermore we show that the present version of the CPA is capable of treating the percolative aspects of hopping transport adequately. © 2013 American Physical Society.

Coherent potential approximation for diffusion and wave propagation in topologically disordered systems / S., Kohler; Ruocco, Giancarlo; Schirmacher, Walter. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 88:6(2013), p. 064203. [10.1103/physrevb.88.064203]

Coherent potential approximation for diffusion and wave propagation in topologically disordered systems

RUOCCO, Giancarlo;SCHIRMACHER, WALTER
2013

Abstract

Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent potential approximation (CPA) suited for describing (i) the diffusive (hopping) motion of classical particles in a random environment, and (ii) the vibrational properties of materials with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity (conductivity) is shown to correspond to the boson peak in the vibrational model. The anomalous regimes above the crossover are governed by a complex, frequency-dependent self-energy. The boson peak is shown to be stronger for non-Gaussian disorder than for Gaussian disorder. We demonstrate that the low-frequency nonanalyticity of the off-lattice version of the CPA leads to the correct long-time tails of the velocity autocorrelation function in the hopping problem and to low-frequency Rayleigh scattering in the wave problem. Furthermore we show that the present version of the CPA is capable of treating the percolative aspects of hopping transport adequately. © 2013 American Physical Society.
2013
01 Pubblicazione su rivista::01a Articolo in rivista
Coherent potential approximation for diffusion and wave propagation in topologically disordered systems / S., Kohler; Ruocco, Giancarlo; Schirmacher, Walter. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 88:6(2013), p. 064203. [10.1103/physrevb.88.064203]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/645304
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact