Background: Non-coding RNAs (ncRNAs) are emerging as key regulators of many cellular processes in both physiological and pathological states. Moreover, the constant discovery of new non-coding RNA species suggests that the study of their complex functions is still in its very early stages. This variegated class of RNA species encompasses the well-known microRNAs (miRNAs) and the most recently acknowledged long non-coding RNAs (lncRNAs). Interestingly, in the last couple of years, a few studies have shown that some lncRNAs can act as miRNA sponges, i.e. as competing endogenous RNAs (ceRNAs), able to reduce the amount of miRNAs available to target messenger RNAs (mRNAs).Results: We propose a computational approach to explore the ability of lncRNAs to act as ceRNAs by protecting mRNAs from miRNA repression. A seed match analysis was performed to validate the underlying regression model. We built normal and cancer networks of miRNA-mediated sponge interactions (MMI-networks) using breast cancer expression data provided by The Cancer Genome Atlas.Conclusions: Our study highlights a marked rewiring in the ceRNA program between normal and pathological breast tissue, documented by its " on/off" switch from normal to cancer, and vice-versa. This mutually exclusive activation confers an interesting character to ceRNAs as potential oncosuppressive, or oncogenic, protagonists in cancer. At the heart of this phenomenon is the lncRNA PVT1, as illustrated by both the width of its antagonist mRNAs in normal-MMI-network, and the relevance of the latter in breast cancer. Interestingly, PVT1 revealed a net binding preference towards the mir-200 family as the bone of contention with its rival mRNAs. © 2014 Paci et al.; licensee BioMed Central Ltd.

Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer / Paci, Paola; Colombo, Teresa; Farina, Lorenzo. - In: BMC SYSTEMS BIOLOGY. - ISSN 1752-0509. - ELETTRONICO. - 8:1(2014). [10.1186/1752-0509-8-83]

Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer

Paola Paci
;
Lorenzo Farina
2014

Abstract

Background: Non-coding RNAs (ncRNAs) are emerging as key regulators of many cellular processes in both physiological and pathological states. Moreover, the constant discovery of new non-coding RNA species suggests that the study of their complex functions is still in its very early stages. This variegated class of RNA species encompasses the well-known microRNAs (miRNAs) and the most recently acknowledged long non-coding RNAs (lncRNAs). Interestingly, in the last couple of years, a few studies have shown that some lncRNAs can act as miRNA sponges, i.e. as competing endogenous RNAs (ceRNAs), able to reduce the amount of miRNAs available to target messenger RNAs (mRNAs).Results: We propose a computational approach to explore the ability of lncRNAs to act as ceRNAs by protecting mRNAs from miRNA repression. A seed match analysis was performed to validate the underlying regression model. We built normal and cancer networks of miRNA-mediated sponge interactions (MMI-networks) using breast cancer expression data provided by The Cancer Genome Atlas.Conclusions: Our study highlights a marked rewiring in the ceRNA program between normal and pathological breast tissue, documented by its " on/off" switch from normal to cancer, and vice-versa. This mutually exclusive activation confers an interesting character to ceRNAs as potential oncosuppressive, or oncogenic, protagonists in cancer. At the heart of this phenomenon is the lncRNA PVT1, as illustrated by both the width of its antagonist mRNAs in normal-MMI-network, and the relevance of the latter in breast cancer. Interestingly, PVT1 revealed a net binding preference towards the mir-200 family as the bone of contention with its rival mRNAs. © 2014 Paci et al.; licensee BioMed Central Ltd.
2014
networks analysis; systems biology; epigenetics
01 Pubblicazione su rivista::01a Articolo in rivista
Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer / Paci, Paola; Colombo, Teresa; Farina, Lorenzo. - In: BMC SYSTEMS BIOLOGY. - ISSN 1752-0509. - ELETTRONICO. - 8:1(2014). [10.1186/1752-0509-8-83]
File allegati a questo prodotto
File Dimensione Formato  
Paci_Computational-analysis_2014.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF
VE_2014_11573-645275.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/645275
Citazioni
  • ???jsp.display-item.citation.pmc??? 124
  • Scopus 208
  • ???jsp.display-item.citation.isi??? 203
social impact