One of the main goals of systems biology models in a health-care context is to individualise models in order to compute patient-specific predictions for the time evolution of species (e.g., hormones) concentrations. In this paper we present a statistical model checking based approach that, given an interpatient model and a few clinical measurements, computes a value for the model parameter vector (model individualisation) that, with high confidence, is a global minimum for the function evaluating the mismatch between the model predictions and the available measurements. We evaluate effectiveness of the proposed approach by presenting experimental results on using the GynCycle model (describing the feedback mechanisms regulating a number of reproductive hormones) to compute patientspecific predictions for the time evolution of blood concentrations of E2 (Estradiol), P4 (Progesterone), FSH (Follicle-Stimulating Hormone) and LH (Luteinizing Hormone) after a certain number of clinical measurements.

Patient-Specific Models from Inter-Patient Biological Models and Clinical Records / Tronci, Enrico; Mancini, Toni; Salvo, Ivano; Sinisi, Stefano; Mari, Federico; Melatti, Igor; Massini, Annalisa; Davi', Francesco; T., Dierkes; R., Ehrig; S., Roeblitz; B., Leeners; T. H. C., Krüger; M., Egli; F., Ille. - STAMPA. - (2014). ((Intervento presentato al convegno 14th Conference in Formal Methods in Computer-Aided Design [10.1109/FMCAD.2014.6987615].

Patient-Specific Models from Inter-Patient Biological Models and Clinical Records

TRONCI, Enrico;MANCINI, Toni;SALVO, Ivano;SINISI , STEFANO;MARI, FEDERICO;MELATTI, IGOR;MASSINI, Annalisa;DAVI', FRANCESCO;
2014

Abstract

One of the main goals of systems biology models in a health-care context is to individualise models in order to compute patient-specific predictions for the time evolution of species (e.g., hormones) concentrations. In this paper we present a statistical model checking based approach that, given an interpatient model and a few clinical measurements, computes a value for the model parameter vector (model individualisation) that, with high confidence, is a global minimum for the function evaluating the mismatch between the model predictions and the available measurements. We evaluate effectiveness of the proposed approach by presenting experimental results on using the GynCycle model (describing the feedback mechanisms regulating a number of reproductive hormones) to compute patientspecific predictions for the time evolution of blood concentrations of E2 (Estradiol), P4 (Progesterone), FSH (Follicle-Stimulating Hormone) and LH (Luteinizing Hormone) after a certain number of clinical measurements.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/645261
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 8
social impact