We consider a random walk on a homogeneous Poisson point process with energy marks. The jump rates decay exponentially in the alpha-power of the jump length and depend on the energy marks via a Boltzmann-like factor. The case alpha = 1 corresponds to the phonon-induced Mott variable range hopping in disordered solids in the regime of strong Anderson localization. We prove that for almost every realization of the marked process, the diffusively rescaled random walk, with an arbitrary start point, converges to a Brownian motion whose diffusion matrix is positive definite and independent of the environment. Finally, we extend the above result to other point processes including diluted lattices.

Invariance principle for Mott variable range hopping and other walks on point processes / P., Caputo; Faggionato, Alessandra; T., Prescott. - In: ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES. - ISSN 0246-0203. - STAMPA. - 49:3(2013), pp. 654-697. [10.1214/12-aihp490]

Invariance principle for Mott variable range hopping and other walks on point processes

FAGGIONATO, ALESSANDRA;
2013

Abstract

We consider a random walk on a homogeneous Poisson point process with energy marks. The jump rates decay exponentially in the alpha-power of the jump length and depend on the energy marks via a Boltzmann-like factor. The case alpha = 1 corresponds to the phonon-induced Mott variable range hopping in disordered solids in the regime of strong Anderson localization. We prove that for almost every realization of the marked process, the diffusively rescaled random walk, with an arbitrary start point, converges to a Brownian motion whose diffusion matrix is positive definite and independent of the environment. Finally, we extend the above result to other point processes including diluted lattices.
2013
poisson point process; stochastic domination; corrector; percolation; invariance principle; random walk in random environment
01 Pubblicazione su rivista::01a Articolo in rivista
Invariance principle for Mott variable range hopping and other walks on point processes / P., Caputo; Faggionato, Alessandra; T., Prescott. - In: ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES. - ISSN 0246-0203. - STAMPA. - 49:3(2013), pp. 654-697. [10.1214/12-aihp490]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/645080
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact