We present the detection of 5.9 keV X-rays in a silicon wafer utilising an array of frequency multiplexed Kinetic Inductance Detectors. The readout electronics consists of a programmable digital electronics with an integrated 12-bit ADC, operating with a maximum frequency of 100 MHz. We implement a lumped element geometry, realising pixels as small as possible in order to achieve better position resolution. The whole system allows the simultaneous readout of 14 pixels with a bandwidth of 300 kHz, but it is easily scalable up to 100 pixels. A higher bandwidth detection, with less pixels, allows the reconstruction of the photon absorption position in the substrate up to hundreds of microns. This technological development could be applied in the next future to large area X-Ray Imaging. A better understanding of high energy photon and particle detection is also crucial for the space implementation of LEKIDs for mm-astronomy, where data loss due to Cosmic particles could be a major issue. © Springer Science+Business Media, LLC 2012.

X-ray imaging using LEKIDs / Cruciani, Angelo; L. j., Swenson; A., Monfardini; N., Boudou; M., Calvo; M., Roesch. - In: JOURNAL OF LOW TEMPERATURE PHYSICS. - ISSN 0022-2291. - 167:3-4(2012), pp. 311-317. [10.1007/s10909-012-0549-z]

X-ray imaging using LEKIDs

CRUCIANI, ANGELO;
2012

Abstract

We present the detection of 5.9 keV X-rays in a silicon wafer utilising an array of frequency multiplexed Kinetic Inductance Detectors. The readout electronics consists of a programmable digital electronics with an integrated 12-bit ADC, operating with a maximum frequency of 100 MHz. We implement a lumped element geometry, realising pixels as small as possible in order to achieve better position resolution. The whole system allows the simultaneous readout of 14 pixels with a bandwidth of 300 kHz, but it is easily scalable up to 100 pixels. A higher bandwidth detection, with less pixels, allows the reconstruction of the photon absorption position in the substrate up to hundreds of microns. This technological development could be applied in the next future to large area X-Ray Imaging. A better understanding of high energy photon and particle detection is also crucial for the space implementation of LEKIDs for mm-astronomy, where data loss due to Cosmic particles could be a major issue. © Springer Science+Business Media, LLC 2012.
2012
multiplexing; lekid; kinetic inductance detector
01 Pubblicazione su rivista::01a Articolo in rivista
X-ray imaging using LEKIDs / Cruciani, Angelo; L. j., Swenson; A., Monfardini; N., Boudou; M., Calvo; M., Roesch. - In: JOURNAL OF LOW TEMPERATURE PHYSICS. - ISSN 0022-2291. - 167:3-4(2012), pp. 311-317. [10.1007/s10909-012-0549-z]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/641784
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact