In our previous work we studied minimal fractional decompositions of a rational matrix pseudodifferential operator: H=A/B, where A and B are matrix differential operators, and B is non-degenerate of minimal possible degree deg(B). In the present paper we introduce the singular degree sdeg(H)=deg(B), and show that for an arbitrary rational expression H=sum_a (A^a_1)/(B^a_1)...(A^a_n)/(B^a_n), we have that sdeg(H) is less than or equal to sum_{a,i} deg(B^a_i). If the equality holds, we call such an expression minimal. We study the properties of the singular degree and of minimal rational expressions. These results are important for the computations involved in the Lenard-Magri scheme of integrability.
Singular degree of a rational matrix pseudodifferential operator / DE SOLE, Alberto; V., Kac; S., Carpentier. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - STAMPA. - 13(2014), pp. 5162-5195. [10.1093/imrn/rnu093]
Titolo: | Singular degree of a rational matrix pseudodifferential operator | |
Autori: | ||
Data di pubblicazione: | 2014 | |
Rivista: | ||
Citazione: | Singular degree of a rational matrix pseudodifferential operator / DE SOLE, Alberto; V., Kac; S., Carpentier. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - STAMPA. - 13(2014), pp. 5162-5195. [10.1093/imrn/rnu093] | |
Handle: | http://hdl.handle.net/11573/639414 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Carpentier_Singular-degree_2014.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | Tutti i diritti riservati (All rights reserved) | Administrator Richiedi una copia | |
Carpentier_Singular-degree_2014.pdf | Versione editoriale (versione pubblicata con il layout dell'editore) | Tutti i diritti riservati (All rights reserved) | Administrator Richiedi una copia |