In our previous work we studied minimal fractional decompositions of a rational matrix pseudodifferential operator: H=A/B, where A and B are matrix differential operators, and B is non-degenerate of minimal possible degree deg(B). In the present paper we introduce the singular degree sdeg(H)=deg(B), and show that for an arbitrary rational expression H=sum_a (A^a_1)/(B^a_1)...(A^a_n)/(B^a_n), we have that sdeg(H) is less than or equal to sum_{a,i} deg(B^a_i). If the equality holds, we call such an expression minimal. We study the properties of the singular degree and of minimal rational expressions. These results are important for the computations involved in the Lenard-Magri scheme of integrability.
Singular degree of a rational matrix pseudodifferential operator / DE SOLE, Alberto; V., Kac; S., Carpentier. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - STAMPA. - 13:(2014), pp. 5162-5195. [10.1093/imrn/rnu093]
Singular degree of a rational matrix pseudodifferential operator
DE SOLE, ALBERTO;
2014
Abstract
In our previous work we studied minimal fractional decompositions of a rational matrix pseudodifferential operator: H=A/B, where A and B are matrix differential operators, and B is non-degenerate of minimal possible degree deg(B). In the present paper we introduce the singular degree sdeg(H)=deg(B), and show that for an arbitrary rational expression H=sum_a (A^a_1)/(B^a_1)...(A^a_n)/(B^a_n), we have that sdeg(H) is less than or equal to sum_{a,i} deg(B^a_i). If the equality holds, we call such an expression minimal. We study the properties of the singular degree and of minimal rational expressions. These results are important for the computations involved in the Lenard-Magri scheme of integrability.File | Dimensione | Formato | |
---|---|---|---|
Carpentier_Singular-degree_2014.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
262.9 kB
Formato
Adobe PDF
|
262.9 kB | Adobe PDF | Contatta l'autore |
Carpentier_Singular-degree_2014.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
262.9 kB
Formato
Adobe PDF
|
262.9 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.