Peritoneal dialysis (PD) is a form of renal replacement therapy whose repeated use can alter dialytic function through induction of epithelial-mesenchymal transition (EMT) and fibrosis, eventually leading to PD discontinuation. The peritoneum from Cav1-/- mice showed increased EMT, thickness and fibrosis. Exposure of Cav1-/- mice to PD fluids further increased peritoneal membrane thickness, altered permeability and increased the number of FSP-1/cytokeratin-positive cells invading the sub-mesothelial stroma. High-throughput quantitative proteomics revealed increased abundance of collagens, FN and laminin, as well as proteins related to TGF- activity in matrices derived from Cav1-/- cells. Lack of Cav1 was associated with hyperactivation of a MEK-ERK1/2-Snail-1 pathway that regulated the Smad2-3/Smad1-5-8 balance. Pharmacological blockade of MEK rescued E-cadherin and ZO-1 inter-cellular junction localization, reduced fibrosis and restored peritoneal function in Cav1-/- mice. Moreover, treatment of human PD-patient-derived MCs with drugs increasing Cav1 levels, as well as ectopic Cav1 expression, induced reacquisition of epithelial features. This study demonstrates a pivotal role of Cav1 in the balance of epithelial versus mesenchymal state and suggests targets for the prevention of fibrosis during PD.
Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis / Strippoli, Raffaele; Jesús, Loureiro; Vanessa, Moreno; Ignacio, Benedicto; María Luisa Pérez, Lozano; Olga, Barreiro; Teijo, Pellinen; Susana, Minguet; Miguel, Foronda; Maria Teresa, Osteso; Enrique, Calvo; Jesús, Vázquez; Manuel López, Cabrera; Miguel Angel del, Pozo. - In: EMBO MOLECULAR MEDICINE. - ISSN 1757-4676. - STAMPA. - 7:1(2015), pp. 102-123. [10.15252/emmm.201404127]
Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis
STRIPPOLI, RAFFAELE;
2015
Abstract
Peritoneal dialysis (PD) is a form of renal replacement therapy whose repeated use can alter dialytic function through induction of epithelial-mesenchymal transition (EMT) and fibrosis, eventually leading to PD discontinuation. The peritoneum from Cav1-/- mice showed increased EMT, thickness and fibrosis. Exposure of Cav1-/- mice to PD fluids further increased peritoneal membrane thickness, altered permeability and increased the number of FSP-1/cytokeratin-positive cells invading the sub-mesothelial stroma. High-throughput quantitative proteomics revealed increased abundance of collagens, FN and laminin, as well as proteins related to TGF- activity in matrices derived from Cav1-/- cells. Lack of Cav1 was associated with hyperactivation of a MEK-ERK1/2-Snail-1 pathway that regulated the Smad2-3/Smad1-5-8 balance. Pharmacological blockade of MEK rescued E-cadherin and ZO-1 inter-cellular junction localization, reduced fibrosis and restored peritoneal function in Cav1-/- mice. Moreover, treatment of human PD-patient-derived MCs with drugs increasing Cav1 levels, as well as ectopic Cav1 expression, induced reacquisition of epithelial features. This study demonstrates a pivotal role of Cav1 in the balance of epithelial versus mesenchymal state and suggests targets for the prevention of fibrosis during PD.File | Dimensione | Formato | |
---|---|---|---|
Strippoli_Caveolin-1-deficiency.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
4.13 MB
Formato
Adobe PDF
|
4.13 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.