Let H be a selfadjoint operator and A a closed operator on a Hilbert space H. If A is H-(super)smooth in the sense of Kato-Yajima, we prove that AH^(-1/4) is H^(1/2)-(super)smooth. This allows us to include wave and Klein-Gordon equations in the abstract theory at the same level of generality as Schrödinger equations. We give a few applications and in particular, based on the resolvent estimates of Erdogan, Goldberg and Schlag (Forum Mathematicum 21:687–722, 2009), we prove Strichartz estimates for wave equations perturbed with large magnetic potentials on Rn.

Kato smoothing and Strichartz estimates for wave equations with magnetic potentials / D'Ancona, Piero Antonio. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 335:(2015), pp. 1-16. [10.1007/s00220-014-2169-8]

Kato smoothing and Strichartz estimates for wave equations with magnetic potentials

D'ANCONA, Piero Antonio
2015

Abstract

Let H be a selfadjoint operator and A a closed operator on a Hilbert space H. If A is H-(super)smooth in the sense of Kato-Yajima, we prove that AH^(-1/4) is H^(1/2)-(super)smooth. This allows us to include wave and Klein-Gordon equations in the abstract theory at the same level of generality as Schrödinger equations. We give a few applications and in particular, based on the resolvent estimates of Erdogan, Goldberg and Schlag (Forum Mathematicum 21:687–722, 2009), we prove Strichartz estimates for wave equations perturbed with large magnetic potentials on Rn.
2015
Strichartz estimates; wave equation; Schrodinger equation; spectral theory
01 Pubblicazione su rivista::01a Articolo in rivista
Kato smoothing and Strichartz estimates for wave equations with magnetic potentials / D'Ancona, Piero Antonio. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 335:(2015), pp. 1-16. [10.1007/s00220-014-2169-8]
File allegati a questo prodotto
File Dimensione Formato  
Dancona_Kato-smoothing_2015.pdf

solo gestori archivio

Note: Articolo principale
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 517.48 kB
Formato Adobe PDF
517.48 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/637841
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact