Consider the nonlinear heat equation(Formula presented.)in the unit ball of (Formula presented.), with Dirichlet boundary condition. Let (Formula presented.) be a radially symmetric, sign-changing stationary solution having a fixed number (Formula presented.) of nodal regions. We prove that the solution of (NLH) with initial value (Formula presented.) blows up in finite time if {pipe}λ -1{pipe} > 0 is sufficiently small and if p is sufficiently large. The proof is based on the analysis of the asymptotic behavior of (Formula presented.) and of the linearized operator (Formula presented.). © 2014 Springer Basel.

Sign-changing stationary solutions and blowup for a nonlinear heat equation in dimension two / Flavio, Dickstein; Pacella, Filomena; Berardino, Sciunzi. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - STAMPA. - 14:3(2014), pp. 617-633. [10.1007/s00028-014-0230-x]

Sign-changing stationary solutions and blowup for a nonlinear heat equation in dimension two

PACELLA, Filomena;
2014

Abstract

Consider the nonlinear heat equation(Formula presented.)in the unit ball of (Formula presented.), with Dirichlet boundary condition. Let (Formula presented.) be a radially symmetric, sign-changing stationary solution having a fixed number (Formula presented.) of nodal regions. We prove that the solution of (NLH) with initial value (Formula presented.) blows up in finite time if {pipe}λ -1{pipe} > 0 is sufficiently small and if p is sufficiently large. The proof is based on the analysis of the asymptotic behavior of (Formula presented.) and of the linearized operator (Formula presented.). © 2014 Springer Basel.
2014
01 Pubblicazione su rivista::01a Articolo in rivista
Sign-changing stationary solutions and blowup for a nonlinear heat equation in dimension two / Flavio, Dickstein; Pacella, Filomena; Berardino, Sciunzi. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - STAMPA. - 14:3(2014), pp. 617-633. [10.1007/s00028-014-0230-x]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/637614
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact