We give a complete characterization of bipartite graphs hav- ing tree-like Galois lattices. We prove that the poset obtained by deleting bottom and top elements from the Galois lattice of a bipartite graph is tree-like if and only if the graph is a Bipartite Distance Hereditary graph. We show that the lattice can be realized as the containment relation among directed paths in an arborescence. Moreover, a compact encoding of Bipartite Distance Hereditary graphs is proposed, that allows optimal time computation of neighborhood intersections and maximal bicliques.

On the Galois Lattice of Bipartite Distance Hereditary Graphs / N., Apollonio; M., Caramia; Franciosa, Paolo Giulio. - STAMPA. - 8986:(2014), pp. 37-48. (Intervento presentato al convegno 25th International Workshop on Combinatorial Algorithms tenutosi a Duluth (MN, USA) nel October 15 - 17, 2014).

On the Galois Lattice of Bipartite Distance Hereditary Graphs

FRANCIOSA, Paolo Giulio
2014

Abstract

We give a complete characterization of bipartite graphs hav- ing tree-like Galois lattices. We prove that the poset obtained by deleting bottom and top elements from the Galois lattice of a bipartite graph is tree-like if and only if the graph is a Bipartite Distance Hereditary graph. We show that the lattice can be realized as the containment relation among directed paths in an arborescence. Moreover, a compact encoding of Bipartite Distance Hereditary graphs is proposed, that allows optimal time computation of neighborhood intersections and maximal bicliques.
2014
LNCS
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/637478
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact