We study spectral asymptotic properties of conductive layered-thin-fibers of invasive fractal nature. The problem is formulated as a boundary value problem for singular elliptic operators with potentials in a quasi-filling geometry for the fibers. The methods are those of variational singular homogenization and M-convergence. We prove that the spectral measures of the differential problems converge to the spectral measure of a non-trivial self-adjoint operator with fractal terms.
Layered fractal fibers and potentials / U., Mosco; Vivaldi, Maria Agostina. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 103 n°5:(2015), pp. 1198-1227. [10.1016/j.matpur.2014.10.010]
Layered fractal fibers and potentials
VIVALDI, Maria Agostina
2015
Abstract
We study spectral asymptotic properties of conductive layered-thin-fibers of invasive fractal nature. The problem is formulated as a boundary value problem for singular elliptic operators with potentials in a quasi-filling geometry for the fibers. The methods are those of variational singular homogenization and M-convergence. We prove that the spectral measures of the differential problems converge to the spectral measure of a non-trivial self-adjoint operator with fractal terms.| File | Dimensione | Formato | |
|---|---|---|---|
|
Mosco-Vivaldi,JMPA.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
718.29 kB
Formato
Adobe PDF
|
718.29 kB | Adobe PDF | Contatta l'autore |
|
mvjmpa15.9.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
371.39 kB
Formato
Adobe PDF
|
371.39 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


