We study spectral asymptotic properties of conductive layered-thin-fibers of invasive fractal nature. The problem is formulated as a boundary value problem for singular elliptic operators with potentials in a quasi-filling geometry for the fibers. The methods are those of variational singular homogenization and M-convergence. We prove that the spectral measures of the differential problems converge to the spectral measure of a non-trivial self-adjoint operator with fractal terms.

Layered fractal fibers and potentials / U., Mosco; Vivaldi, Maria Agostina. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 103 n°5:(2015), pp. 1198-1227. [10.1016/j.matpur.2014.10.010]

Layered fractal fibers and potentials

VIVALDI, Maria Agostina
2015

Abstract

We study spectral asymptotic properties of conductive layered-thin-fibers of invasive fractal nature. The problem is formulated as a boundary value problem for singular elliptic operators with potentials in a quasi-filling geometry for the fibers. The methods are those of variational singular homogenization and M-convergence. We prove that the spectral measures of the differential problems converge to the spectral measure of a non-trivial self-adjoint operator with fractal terms.
2015
Fractal fibers; singular elliptic operators; variational convergence.
01 Pubblicazione su rivista::01a Articolo in rivista
Layered fractal fibers and potentials / U., Mosco; Vivaldi, Maria Agostina. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 103 n°5:(2015), pp. 1198-1227. [10.1016/j.matpur.2014.10.010]
File allegati a questo prodotto
File Dimensione Formato  
Mosco-Vivaldi,JMPA.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 718.29 kB
Formato Adobe PDF
718.29 kB Adobe PDF   Contatta l'autore
mvjmpa15.9.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 371.39 kB
Formato Adobe PDF
371.39 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/636983
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact