We study the weak* lower semicontinuity of supremal functionals under a differential constraint that is described by a constant-rank partial differential operator A. The notion of A-Young quasiconvexity, which is introduced here, provides a sufficient condition when the supremand function is only lower semicontinuous. We also establish necessary conditions for weak* lower semicontinuity. Finally, we discuss the divergence and curl-free cases and, as an application, we characterise the strength set in the context of electrical resistivity.

On the lower semicontinuity of supremal functional under differential constraint / Ansini, Nadia; Francesca, Prinari. - In: ESAIM. COCV. - ISSN 1292-8119. - STAMPA. - 21:(2015), pp. 1053-1075. [10.1051/cocv/2014058]

On the lower semicontinuity of supremal functional under differential constraint

ANSINI, NADIA;
2015

Abstract

We study the weak* lower semicontinuity of supremal functionals under a differential constraint that is described by a constant-rank partial differential operator A. The notion of A-Young quasiconvexity, which is introduced here, provides a sufficient condition when the supremand function is only lower semicontinuous. We also establish necessary conditions for weak* lower semicontinuity. Finally, we discuss the divergence and curl-free cases and, as an application, we characterise the strength set in the context of electrical resistivity.
2015
supremal functionals; gamma-convergence; lower semicontinuity; A-quasiconvexity; Lp-approximation
01 Pubblicazione su rivista::01a Articolo in rivista
On the lower semicontinuity of supremal functional under differential constraint / Ansini, Nadia; Francesca, Prinari. - In: ESAIM. COCV. - ISSN 1292-8119. - STAMPA. - 21:(2015), pp. 1053-1075. [10.1051/cocv/2014058]
File allegati a questo prodotto
File Dimensione Formato  
Ansini_Lower-semicontinuity_2015.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 350.72 kB
Formato Adobe PDF
350.72 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/630570
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 12
social impact