Results from a systematic verification and validation of Smoothed Particles Hydrodynamic methods for the numerical simulation of periodic breaking water waves on constant sloped beaches are presented. Periodic waves are generated in deep water and then numerically followed during their propagation in constant bottom depth and their transformation up to the breaking and run-up on a sloped beach profile, in a 2D numerical flume wave tank. We verify the consistency of the method first in the simpler case of deep water second order Stokes water waves generated with a flapped type wave-maker, investigating the effect of a number of tuning parameters of the SPH method like artificial viscosity and smoothing length, among others. Once these parameters have been set to ensure the correct reproduction of the kinematic properties of the generated waves the numerical model is then validated in shallow water, following their transformation on a constant slope bottom. Numerical results are compared with experimental ones in terms of wave profiles and flow field characteristics at different longitudinal location along the sloped beach taken.

Numerical modeling of breaking periodical waves on a sloped beach profile by SPH / Angelini Rota Roselli, Riccardo; Brizzolara, S.; Chryssostomidis, C.; Guercio, Roberto. - STAMPA. - (2014), pp. 876-883. (Intervento presentato al convegno 24th International Ocean and Polar Engineering Conference, ISOPE 2014 Busan tenutosi a Busan; South Korea nel 15 June 2014 through 20 June 2014).

Numerical modeling of breaking periodical waves on a sloped beach profile by SPH

Angelini Rota Roselli , Riccardo;GUERCIO, Roberto
2014

Abstract

Results from a systematic verification and validation of Smoothed Particles Hydrodynamic methods for the numerical simulation of periodic breaking water waves on constant sloped beaches are presented. Periodic waves are generated in deep water and then numerically followed during their propagation in constant bottom depth and their transformation up to the breaking and run-up on a sloped beach profile, in a 2D numerical flume wave tank. We verify the consistency of the method first in the simpler case of deep water second order Stokes water waves generated with a flapped type wave-maker, investigating the effect of a number of tuning parameters of the SPH method like artificial viscosity and smoothing length, among others. Once these parameters have been set to ensure the correct reproduction of the kinematic properties of the generated waves the numerical model is then validated in shallow water, following their transformation on a constant slope bottom. Numerical results are compared with experimental ones in terms of wave profiles and flow field characteristics at different longitudinal location along the sloped beach taken.
2014
24th International Ocean and Polar Engineering Conference, ISOPE 2014 Busan
Smoothed Particle Hydrodynamics (SPH), Periodic Waves on Sloped Beach, Wave Breaking, DualSPHysics validation.
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Numerical modeling of breaking periodical waves on a sloped beach profile by SPH / Angelini Rota Roselli, Riccardo; Brizzolara, S.; Chryssostomidis, C.; Guercio, Roberto. - STAMPA. - (2014), pp. 876-883. (Intervento presentato al convegno 24th International Ocean and Polar Engineering Conference, ISOPE 2014 Busan tenutosi a Busan; South Korea nel 15 June 2014 through 20 June 2014).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/629191
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact