MoOx-ZrO2 based catalysts were prepared by equilibrium adsorption in basic (pH 8) or in acid (pH 2) conditions with molybdenum content up to 3 wt.% (pH 8) and up to 8 wt.% (pH 2) using hydrous zirconium oxide, designated as ZrO2(383), as support. The samples were characterized by textural analysis (BET), X-ray diffraction (XRD), Raman and X-ray photoelectron (XPS) spectroscopies. The catalytic behavior was analyzed for the selective oxidation of diphenylsulfide (DPS) to diphenylsulfone (DPSO2) or diphenylsulfoxide (DPSO) using H2O2 as oxidizing agent. The results show that the pH of the contacting solution affects the uptake of the Mo species and the molecular state of the adsorbed species. Raman spectroscopy identified polymolybdate structures at pH 2 and molybdate aggregates at pH 8. XRD analysis revealed that at increasing molybdenum concentration the interaction between the supported species and the zirconia surface favored the tetragonal volume fraction of zirconia at the expense of the thermodynamically stable monoclinic phase in all series of samples. High conversion of DPS (88%) and selectivity to diphenylsulfone (DPSO2) (60%) was obtained for the pH 2 series of catalysts. These results suggest that the acid environment was the most efficient synthesis parameter leading to the formation of polymolybdates species which are considered the active phases in this reaction.

MoOx-ZrO2 System: Preparation, Characterization and Catalytic Activity for Selective Oxidation of Diphenylsulfide / Esneyder Puello, Polo; Carmen I., Cabello; Gazzoli, Delia. - In: CURRENT CATALYSIS. - ISSN 2211-5455. - STAMPA. - 3:(2014), pp. 172-178. [10.2174/2211544702666131224231955]

MoOx-ZrO2 System: Preparation, Characterization and Catalytic Activity for Selective Oxidation of Diphenylsulfide

GAZZOLI, DELIA
2014

Abstract

MoOx-ZrO2 based catalysts were prepared by equilibrium adsorption in basic (pH 8) or in acid (pH 2) conditions with molybdenum content up to 3 wt.% (pH 8) and up to 8 wt.% (pH 2) using hydrous zirconium oxide, designated as ZrO2(383), as support. The samples were characterized by textural analysis (BET), X-ray diffraction (XRD), Raman and X-ray photoelectron (XPS) spectroscopies. The catalytic behavior was analyzed for the selective oxidation of diphenylsulfide (DPS) to diphenylsulfone (DPSO2) or diphenylsulfoxide (DPSO) using H2O2 as oxidizing agent. The results show that the pH of the contacting solution affects the uptake of the Mo species and the molecular state of the adsorbed species. Raman spectroscopy identified polymolybdate structures at pH 2 and molybdate aggregates at pH 8. XRD analysis revealed that at increasing molybdenum concentration the interaction between the supported species and the zirconia surface favored the tetragonal volume fraction of zirconia at the expense of the thermodynamically stable monoclinic phase in all series of samples. High conversion of DPS (88%) and selectivity to diphenylsulfone (DPSO2) (60%) was obtained for the pH 2 series of catalysts. These results suggest that the acid environment was the most efficient synthesis parameter leading to the formation of polymolybdates species which are considered the active phases in this reaction.
2014
MoOx/ZrO2, Zirconia, Selective diphenylsulfide oxidation, Raman spectroscopy.
01 Pubblicazione su rivista::01a Articolo in rivista
MoOx-ZrO2 System: Preparation, Characterization and Catalytic Activity for Selective Oxidation of Diphenylsulfide / Esneyder Puello, Polo; Carmen I., Cabello; Gazzoli, Delia. - In: CURRENT CATALYSIS. - ISSN 2211-5455. - STAMPA. - 3:(2014), pp. 172-178. [10.2174/2211544702666131224231955]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/628605
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact