Given a finite set of generalized lotteries, that is random quantities equipped with a belief function, and a partial preference relation on them, a necessary and sufficient condition (Choquet rationality) has been provided for its representation as a Choquet expected utility of a strictly increasing utility function. Here we prove that this condition assures the extension of the preference relation and it actually guides the decision maker in this process.

Extendibility of choquet rational preferences on generalized lotteries / G., Coletti; Petturiti, Davide; Vantaggi, Barbara. - ICTCS 2014:(2014), pp. 121-132. (Intervento presentato al convegno 15th Italian Conference on Theoretical Computer Science tenutosi a Perugia; Italy).

Extendibility of choquet rational preferences on generalized lotteries

PETTURITI, DAVIDE;VANTAGGI, Barbara
2014

Abstract

Given a finite set of generalized lotteries, that is random quantities equipped with a belief function, and a partial preference relation on them, a necessary and sufficient condition (Choquet rationality) has been provided for its representation as a Choquet expected utility of a strictly increasing utility function. Here we prove that this condition assures the extension of the preference relation and it actually guides the decision maker in this process.
2014
15th Italian Conference on Theoretical Computer Science
belief function; choquet expected utility; choquet rationality; generalized lottery; preference relation; probability envelope
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Extendibility of choquet rational preferences on generalized lotteries / G., Coletti; Petturiti, Davide; Vantaggi, Barbara. - ICTCS 2014:(2014), pp. 121-132. (Intervento presentato al convegno 15th Italian Conference on Theoretical Computer Science tenutosi a Perugia; Italy).
File allegati a questo prodotto
File Dimensione Formato  
Coletti_Extendibility_2014.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 623.29 kB
Formato Adobe PDF
623.29 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/625996
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact