A Non-Homogeneous hidden Markov Model (NHMM) is developed using a 40-years record (1950-1990) of daily rainfall at eleven stations in Tanzania and re-analysis atmospheric fields of Temperature (T) at 1000 hPa, Geo Potential Height (GPH) at 1000 hPa, Meridional Winds (MW) and Zonal Winds (ZW) at 850 hPa, and Zonal Winds at the Equator(ZWE) from 10 to 1000 hPa. The NHMM is then used to predict future rainfall patterns under a global warming scenario (RCP8.5), using predictors from the CMCC-CMS simulations from 1950-2100. The model directly considers seasonality through changes in the driving variables thus addressing the question of how future changes in seasonality of precipitation can be modeled. The future downscaled simulations from NHMM, with predictors derived from the simulations of the CMCC-CMS CGM, in the worst conditions of global warming as simulated by RCP8.5 scenario, indicate that, Tanzania may be subjected to to a reduction of total annual rainfall; this reduction is concentrated in the wet seasons, OND, mainly as a consequence of decreasing of seasonal number of wet days. . Frequency and Intensity of extreme events don’t show any evident trend during the 21 century.

Projecting Changes in Tanzania Rainfall for the 21st century: Scenarios, Downscaling & Analysis / Cioffi, Francesco; Lall, U.; Monti, A.; Conticello, F.. - ELETTRONICO. - **:(2014). (Intervento presentato al convegno International Workshop:TOWARDS SCENARIOS FOR URBAN ADAPTATION PLANNING, Assessing seawater intrusion under climate and land cover changes in Dar Es Salaam, Tanzania tenutosi a Dar Es Salaam nel 9 June 2014).

Projecting Changes in Tanzania Rainfall for the 21st century: Scenarios, Downscaling & Analysis

CIOFFI, Francesco;F. Conticello
2014

Abstract

A Non-Homogeneous hidden Markov Model (NHMM) is developed using a 40-years record (1950-1990) of daily rainfall at eleven stations in Tanzania and re-analysis atmospheric fields of Temperature (T) at 1000 hPa, Geo Potential Height (GPH) at 1000 hPa, Meridional Winds (MW) and Zonal Winds (ZW) at 850 hPa, and Zonal Winds at the Equator(ZWE) from 10 to 1000 hPa. The NHMM is then used to predict future rainfall patterns under a global warming scenario (RCP8.5), using predictors from the CMCC-CMS simulations from 1950-2100. The model directly considers seasonality through changes in the driving variables thus addressing the question of how future changes in seasonality of precipitation can be modeled. The future downscaled simulations from NHMM, with predictors derived from the simulations of the CMCC-CMS CGM, in the worst conditions of global warming as simulated by RCP8.5 scenario, indicate that, Tanzania may be subjected to to a reduction of total annual rainfall; this reduction is concentrated in the wet seasons, OND, mainly as a consequence of decreasing of seasonal number of wet days. . Frequency and Intensity of extreme events don’t show any evident trend during the 21 century.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/625152
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact