α1-Antitrypsin is primarily synthesised in the liver, circulates to the lung and protects pulmonary tissues from proteolytic damage. The Z mutant (Glu342Lys) undergoes inactivating conformational change and polymerises. Polymers are retained within the hepatocyte endoplasmic reticulum (ER) in homozygous (PiZZ) individuals, predisposing the individuals to hepatic cirrhosis and emphysema. Latency is an analogous process of inactivating, intra-molecular conformational change and may co-occur with polymerisation. However, the relationship between latency and polymerisation remained unexplored in the absence of a suitable probe. We have developed a novel monoclonal antibody specific for latent α1-antitrypsin and used it in combination with a polymer-specific antibody, to assess the association of both conformers in vitro, in disease and during augmentation therapy. In vitro kinetics analysis showed polymerisation dominated the pathway but latency could be promoted by stabilising monomeric α1-antitrypsin. Polymers were extensively produced in hepatocytes and a cell line expressing Z α1-antitrypsin but the latent protein was not detected despite manipulation of the secretory pathway. However, α1-antitrypsin augmentation therapy contains latent α1-antitrypsin, as did the plasma of 63/274 PiZZ individuals treated with augmentation therapy but 0/264 who were not receiving this medication (p < 10−14). We conclude that latent α1-antitrypsin is a by-product of the polymerisation pathway, that the intracellular folding environment is resistant to formation of the latent conformer but that augmentation therapy introduces latent α1-antitrypsin into the circulation. A suite of monoclonal antibodies and methodologies developed in this study can characterise α1-antitrypsin folding and conformational transitions, and screen methods to improve augmentation therapy.

Characterising the association of latency with alpha1 antitrypsin polymerisation using a novel monoclonal antibody / L., Tan; J., Perez; M., Mela; MIRANDA BANOS, MARIA ELENA; K. A., Burling; F. N., Rouhani; D. L., DeMeo; I., Haq; J. A., Irving; A., Ordóñez; J. A., Dickens; M., Brantly; S. J., Marciniak; G. J. M., Alexander; B., Gooptu; D. A., Lomas. - In: THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY. - ISSN 1357-2725. - STAMPA. - 58:(2015), pp. 81-91. [10.1016/j.biocel.2014.11.005]

Characterising the association of latency with alpha1 antitrypsin polymerisation using a novel monoclonal antibody

MIRANDA BANOS, MARIA ELENA;
2015

Abstract

α1-Antitrypsin is primarily synthesised in the liver, circulates to the lung and protects pulmonary tissues from proteolytic damage. The Z mutant (Glu342Lys) undergoes inactivating conformational change and polymerises. Polymers are retained within the hepatocyte endoplasmic reticulum (ER) in homozygous (PiZZ) individuals, predisposing the individuals to hepatic cirrhosis and emphysema. Latency is an analogous process of inactivating, intra-molecular conformational change and may co-occur with polymerisation. However, the relationship between latency and polymerisation remained unexplored in the absence of a suitable probe. We have developed a novel monoclonal antibody specific for latent α1-antitrypsin and used it in combination with a polymer-specific antibody, to assess the association of both conformers in vitro, in disease and during augmentation therapy. In vitro kinetics analysis showed polymerisation dominated the pathway but latency could be promoted by stabilising monomeric α1-antitrypsin. Polymers were extensively produced in hepatocytes and a cell line expressing Z α1-antitrypsin but the latent protein was not detected despite manipulation of the secretory pathway. However, α1-antitrypsin augmentation therapy contains latent α1-antitrypsin, as did the plasma of 63/274 PiZZ individuals treated with augmentation therapy but 0/264 who were not receiving this medication (p < 10−14). We conclude that latent α1-antitrypsin is a by-product of the polymerisation pathway, that the intracellular folding environment is resistant to formation of the latent conformer but that augmentation therapy introduces latent α1-antitrypsin into the circulation. A suite of monoclonal antibodies and methodologies developed in this study can characterise α1-antitrypsin folding and conformational transitions, and screen methods to improve augmentation therapy.
2015
α1-Antitrypsin; Latency; Polymerisation; Monoclonal antibodies; Augmentation therapy
01 Pubblicazione su rivista::01a Articolo in rivista
Characterising the association of latency with alpha1 antitrypsin polymerisation using a novel monoclonal antibody / L., Tan; J., Perez; M., Mela; MIRANDA BANOS, MARIA ELENA; K. A., Burling; F. N., Rouhani; D. L., DeMeo; I., Haq; J. A., Irving; A., Ordóñez; J. A., Dickens; M., Brantly; S. J., Marciniak; G. J. M., Alexander; B., Gooptu; D. A., Lomas. - In: THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY. - ISSN 1357-2725. - STAMPA. - 58:(2015), pp. 81-91. [10.1016/j.biocel.2014.11.005]
File allegati a questo prodotto
File Dimensione Formato  
2015_Tan et al.proofs.pdf

solo gestori archivio

Note: Articolo principale
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.9 MB
Formato Adobe PDF
3.9 MB Adobe PDF   Contatta l'autore
Tan_Characterising_2015

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.83 MB
Formato Adobe PDF
3.83 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/623790
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact