We consider the problem of finding upper and lower bounds for the probability of the union of events when the probabilities of the single events and the probabilities of the intersections of up to m events are given. It is known that the best possible bounds can be obtained by solving linear programming problems with a number of variables that is exponential in the number of events. Because of their size and structure, these large linear programs are known to be very hard to solve. In the literature simpler, polynomially sized aggregations are considered and numerous closed form or polynomially computable bounds are derived from those. We present here a new approach that introduces additional constraints to the dual linear programming problems in such a way that those become polynomially solvable. By using different sets of additional constraints, we introduce three new classes of polynomially computable upper and lower bounds. We show that they dominate almost all efficiently computable bounds known in the literature. Furthermore, by characterizing the vertices of two new classes of polyhedra, we can show that in two cases our bounds coincide with classical bounds, proving new extremal properties for those well-known bounds. Finally, we provide extensive numerical results comparing the average tightness of the various bounds on a large number of instances.

Polynomially Computable Bounds for the Probability of the Union of Events / E., Boros; A., Scozzari; Tardella, Fabio; P., Veneziani. - In: MATHEMATICS OF OPERATIONS RESEARCH. - ISSN 0364-765X. - STAMPA. - 39:(2014), pp. 1311-1329. [10.1287/moor.2014.0657]

Polynomially Computable Bounds for the Probability of the Union of Events

TARDELLA, Fabio;
2014

Abstract

We consider the problem of finding upper and lower bounds for the probability of the union of events when the probabilities of the single events and the probabilities of the intersections of up to m events are given. It is known that the best possible bounds can be obtained by solving linear programming problems with a number of variables that is exponential in the number of events. Because of their size and structure, these large linear programs are known to be very hard to solve. In the literature simpler, polynomially sized aggregations are considered and numerous closed form or polynomially computable bounds are derived from those. We present here a new approach that introduces additional constraints to the dual linear programming problems in such a way that those become polynomially solvable. By using different sets of additional constraints, we introduce three new classes of polynomially computable upper and lower bounds. We show that they dominate almost all efficiently computable bounds known in the literature. Furthermore, by characterizing the vertices of two new classes of polyhedra, we can show that in two cases our bounds coincide with classical bounds, proving new extremal properties for those well-known bounds. Finally, we provide extensive numerical results comparing the average tightness of the various bounds on a large number of instances.
2014
probability bounds, probability of the union, submodular functions,
01 Pubblicazione su rivista::01a Articolo in rivista
Polynomially Computable Bounds for the Probability of the Union of Events / E., Boros; A., Scozzari; Tardella, Fabio; P., Veneziani. - In: MATHEMATICS OF OPERATIONS RESEARCH. - ISSN 0364-765X. - STAMPA. - 39:(2014), pp. 1311-1329. [10.1287/moor.2014.0657]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/622188
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact