We prove that any continuous and convex stationary ergodic Hamiltonian admits critical subsolutions, which are strict outside the random Aubry set. They make up, in addition, a dense subset of all critical subsolutions with respect to a suitable metric. If the Hamiltonian is additionally assumed of Tonelli type, then there exist strict subsolutions of class C^1,1 in R^N. The proofs are based on the use of Lax–Oleinik semigroups and their regularizing properties in the stationary ergodic environment, as well as on a generalized notion of Aubry set.
Existence and regularity of strict critical subsolutions in the stationary ergodic setting / Davini, Andrea; Siconolfi, Antonio. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - STAMPA. - 33:2(2016), pp. 243-272. [10.1016/j.anihpc.2014.09.010]
Existence and regularity of strict critical subsolutions in the stationary ergodic setting
DAVINI, ANDREA;SICONOLFI, Antonio
2016
Abstract
We prove that any continuous and convex stationary ergodic Hamiltonian admits critical subsolutions, which are strict outside the random Aubry set. They make up, in addition, a dense subset of all critical subsolutions with respect to a suitable metric. If the Hamiltonian is additionally assumed of Tonelli type, then there exist strict subsolutions of class C^1,1 in R^N. The proofs are based on the use of Lax–Oleinik semigroups and their regularizing properties in the stationary ergodic environment, as well as on a generalized notion of Aubry set.File | Dimensione | Formato | |
---|---|---|---|
Davini_Existence-and-regularity_2016.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
399.87 kB
Formato
Adobe PDF
|
399.87 kB | Adobe PDF | Contatta l'autore |
Davini_Existence-and-regularity-preprint_2016.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
400.1 kB
Formato
Adobe PDF
|
400.1 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.