We study the codimension two locus H in A_g consisting of principally polarized abelian varieties whose theta divisor has a singularity that is not an ordinary double point. We compute the class of H in A_g for every g. For g=4, this turns out to be the locus of Jacobians with a vanishing theta-null. For g=5, via the Prym map we show that H in A_5 has two components, both unirational, which we completely describe. This gives a geometric classification of 5-dimensional ppav whose theta-divisor has a quadratic singularity of non-maximal rank. We then determine the slope of the effective cone of A_5 and show that the component N_0' of the Andreotti-Mayer divisor has minimal slope 54/7. Furthermore, the Iitaka dimension of the linear system corresponding to N_0' is equal to zero.

: Singularities of theta divisors and the geometry of A_5 / G., Farkas; S., Grushevsky; SALVATI MANNI, Riccardo; A., Verra. - In: JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. - ISSN 1435-9855. - STAMPA. - 16:(2014), pp. 1817-1848. [10.4171/JEMS/476]

: Singularities of theta divisors and the geometry of A_5.

SALVATI MANNI, Riccardo;
2014

Abstract

We study the codimension two locus H in A_g consisting of principally polarized abelian varieties whose theta divisor has a singularity that is not an ordinary double point. We compute the class of H in A_g for every g. For g=4, this turns out to be the locus of Jacobians with a vanishing theta-null. For g=5, via the Prym map we show that H in A_5 has two components, both unirational, which we completely describe. This gives a geometric classification of 5-dimensional ppav whose theta-divisor has a quadratic singularity of non-maximal rank. We then determine the slope of the effective cone of A_5 and show that the component N_0' of the Andreotti-Mayer divisor has minimal slope 54/7. Furthermore, the Iitaka dimension of the linear system corresponding to N_0' is equal to zero.
2014
Spazi dei moduli di varieta' abeliane
01 Pubblicazione su rivista::01a Articolo in rivista
: Singularities of theta divisors and the geometry of A_5 / G., Farkas; S., Grushevsky; SALVATI MANNI, Riccardo; A., Verra. - In: JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. - ISSN 1435-9855. - STAMPA. - 16:(2014), pp. 1817-1848. [10.4171/JEMS/476]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/615687
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact