We shall say that a complex manifold $X$ is emph{Kodaira-Spencer formal} if its Kodaira-Spencer differential graded Lie algebra $A^{0,*}_X(Theta_X)$ is formal; if this happen, then the deformation theory of $X$ is completely determined by the graded Lie algebra $H^*(X,Theta_X)$ and the base space of the semiuniversal deformation is a quadratic singularity.. Determine when a complex manifold is Kodaira-Spencer formal is generally difficult and we actually know only a limited class of cases where this happen. Among such examples we have Riemann surfaces, projective spaces, holomorphic Poisson manifolds with surjective anchor map $H^*(X,Omega^1_X) o H^*(X,Theta_X)$ and every compact K"{a}hler manifold with trivial or torsion canonical bundle. In this short note we investigate the behavior of this property under finite products. Let $X,Y$ be compact complex manifolds; we prove that whenever $X$ and $Y$ are K"{a}hler, then $X imes Y$ is Kodaira-Spencer formal if and only if the same holds for $X$ and $Y$. A revisit of a classical example by Douady shows that the above result fails if the K"{a}hler assumption is dropped
Kodaira-Spencer formality of products of complex manifolds / Manetti, Marco. - STAMPA. - (2014), pp. 85-95. [10.1007/978-3-319-05254-0_7].
Kodaira-Spencer formality of products of complex manifolds
MANETTI, Marco
2014
Abstract
We shall say that a complex manifold $X$ is emph{Kodaira-Spencer formal} if its Kodaira-Spencer differential graded Lie algebra $A^{0,*}_X(Theta_X)$ is formal; if this happen, then the deformation theory of $X$ is completely determined by the graded Lie algebra $H^*(X,Theta_X)$ and the base space of the semiuniversal deformation is a quadratic singularity.. Determine when a complex manifold is Kodaira-Spencer formal is generally difficult and we actually know only a limited class of cases where this happen. Among such examples we have Riemann surfaces, projective spaces, holomorphic Poisson manifolds with surjective anchor map $H^*(X,Omega^1_X) o H^*(X,Theta_X)$ and every compact K"{a}hler manifold with trivial or torsion canonical bundle. In this short note we investigate the behavior of this property under finite products. Let $X,Y$ be compact complex manifolds; we prove that whenever $X$ and $Y$ are K"{a}hler, then $X imes Y$ is Kodaira-Spencer formal if and only if the same holds for $X$ and $Y$. A revisit of a classical example by Douady shows that the above result fails if the K"{a}hler assumption is droppedFile | Dimensione | Formato | |
---|---|---|---|
Manetti_Kodaira-Spencer_formality_2014.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
130.33 kB
Formato
Adobe PDF
|
130.33 kB | Adobe PDF | Contatta l'autore |
Manetti_copertina_Kodaira-Spencer-formality_2014.pdf
solo gestori archivio
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
125.76 kB
Formato
Adobe PDF
|
125.76 kB | Adobe PDF | Contatta l'autore |
Manetti_indice_Kodaira-Spencer_formality_2014.pdf
solo gestori archivio
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
41.91 kB
Formato
Adobe PDF
|
41.91 kB | Adobe PDF | Contatta l'autore |
Manetti_Kodaira-Spencer_formality_2014.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
277.2 kB
Formato
Adobe PDF
|
277.2 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.