We shall say that a complex manifold $X$ is emph{Kodaira-Spencer formal} if its Kodaira-Spencer differential graded Lie algebra $A^{0,*}_X(Theta_X)$ is formal; if this happen, then the deformation theory of $X$ is completely determined by the graded Lie algebra $H^*(X,Theta_X)$ and the base space of the semiuniversal deformation is a quadratic singularity.. Determine when a complex manifold is Kodaira-Spencer formal is generally difficult and we actually know only a limited class of cases where this happen. Among such examples we have Riemann surfaces, projective spaces, holomorphic Poisson manifolds with surjective anchor map $H^*(X,Omega^1_X) o H^*(X,Theta_X)$ and every compact K"{a}hler manifold with trivial or torsion canonical bundle. In this short note we investigate the behavior of this property under finite products. Let $X,Y$ be compact complex manifolds; we prove that whenever $X$ and $Y$ are K"{a}hler, then $X imes Y$ is Kodaira-Spencer formal if and only if the same holds for $X$ and $Y$. A revisit of a classical example by Douady shows that the above result fails if the K"{a}hler assumption is dropped

Kodaira-Spencer formality of products of complex manifolds / Manetti, Marco. - STAMPA. - (2014), pp. 85-95. [10.1007/978-3-319-05254-0_7].

Kodaira-Spencer formality of products of complex manifolds

MANETTI, Marco
2014

Abstract

We shall say that a complex manifold $X$ is emph{Kodaira-Spencer formal} if its Kodaira-Spencer differential graded Lie algebra $A^{0,*}_X(Theta_X)$ is formal; if this happen, then the deformation theory of $X$ is completely determined by the graded Lie algebra $H^*(X,Theta_X)$ and the base space of the semiuniversal deformation is a quadratic singularity.. Determine when a complex manifold is Kodaira-Spencer formal is generally difficult and we actually know only a limited class of cases where this happen. Among such examples we have Riemann surfaces, projective spaces, holomorphic Poisson manifolds with surjective anchor map $H^*(X,Omega^1_X) o H^*(X,Theta_X)$ and every compact K"{a}hler manifold with trivial or torsion canonical bundle. In this short note we investigate the behavior of this property under finite products. Let $X,Y$ be compact complex manifolds; we prove that whenever $X$ and $Y$ are K"{a}hler, then $X imes Y$ is Kodaira-Spencer formal if and only if the same holds for $X$ and $Y$. A revisit of a classical example by Douady shows that the above result fails if the K"{a}hler assumption is dropped
2014
Trends in contemporary mathematics
Kodaira-Spencer formality
02 Pubblicazione su volume::02a Capitolo o Articolo
Kodaira-Spencer formality of products of complex manifolds / Manetti, Marco. - STAMPA. - (2014), pp. 85-95. [10.1007/978-3-319-05254-0_7].
File allegati a questo prodotto
File Dimensione Formato  
Manetti_Kodaira-Spencer_formality_2014.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 130.33 kB
Formato Adobe PDF
130.33 kB Adobe PDF   Contatta l'autore
Manetti_copertina_Kodaira-Spencer-formality_2014.pdf

solo gestori archivio

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 125.76 kB
Formato Adobe PDF
125.76 kB Adobe PDF   Contatta l'autore
Manetti_indice_Kodaira-Spencer_formality_2014.pdf

solo gestori archivio

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 41.91 kB
Formato Adobe PDF
41.91 kB Adobe PDF   Contatta l'autore
Manetti_Kodaira-Spencer_formality_2014.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 277.2 kB
Formato Adobe PDF
277.2 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/603584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact