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Abstract. The Kodaira-Spencer differential graded Lie algebra of the product of

compact Kähler manifolds is formal if and only if every factor has the same property.

This is false without the Kähler assumption.

We shall say that a complex manifold X is Kodaira-Spencer formal if its Kodaira-
Spencer differential graded Lie algebra A0,∗

X (ΘX) is formal; if this happen, then the de-
formation theory of X is completely determined by the graded Lie algebra H∗(X,ΘX)
and the base space of the semiuniversal deformation is a quadratic singularity. Determine
when a complex manifold is Kodaira-Spencer formal is generally difficult and we actually
know only a limited class of cases where this happen. Among such examples we have Rie-
mann surfaces, projective spaces, holomorphic Poisson manifolds with surjective anchor
map H∗(X,Ω1

X)→ H∗(X,ΘX) [4] and every compact Kähler manifold with trivial or tor-
sion canonical bundle, see [9] and references therein. In this short note we investigate the
behavior of this property under finite products. Let X,Y be compact complex manifolds;
we prove that whenever X and Y are Kähler, then X × Y is Kodaira-Spencer formal if
and only if the same holds for X and Y (Corollary 2.3). A revisit of a classical example
by Douady shows that the above result fails if the Kähler assumption is dropped.

1. Review of differential graded (Lie) algebras and formality

In this section every vector space and tensor product is intended over a fixed field K of
characteristic 0. In rational homotopy theory, an important role is played by the notion of
formality of a differential graded algebra [2, p. 260]. A similar role in deformation theory
is played by the notion of formality of a differential graded Lie algebra [5, p. 52].

Definition 1.1. A DG-algebra (short for differential graded commutative algebra) is the
data of a Z-graded vector space A = ⊕n∈ZAn, equipped with a differential d : An → An+1,
d2 = 0, and a product

An ×Am → An+m, (a, b) 7→ ab,

which satisfy the following conditions:

(1) (associativity) (ab)c = a(bc),
(2) (graded commutativity) ab = (−1)deg(a) deg(b)ba,
(3) (graded Leibniz) d(ab) = d(a)b+ (−1)deg(a)ad(b).

In particular every DG-algebra is also a cochain complex and its cohomology inherits
a structure of graded commutative algebra. A morphism of DG-algebras is simply a
morphism of graded algebras commuting with differentials. A DG-algebra A is called
unitary if there exists a unit 1 ∈ A0 such that 1a = a for every a ∈ A.
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Typical examples of DG-algebras are the de Rham complex A∗,∗X and the Dolbeault

complex A0,∗
X of a holomorphic manifold X, equipped with the usual wedge product of

differential forms.

Definition 1.2. A morphism f : A→ B of DG-algebras is called a quasi-isomorphism if
it is a quasi-isomorphism of the underlying cochain complexes. Two DG-algebras are said
to be quasi-isomorphic if they are equivalent under the equivalence relation generated by
quasi-isomorphisms.

A DG-algebra A is called formal if it is quasi-isomorphic to its cohomology algebra
H∗(A).

Example 1.3 (The Iwasawa DG-algebra). Probably the simplest example of non formal
DG-algebra is the Iwasawa algebra: consider the vector space V with basis e1, e2, e3 and

the unique differential on the exterior algebra R = ⊕iRi, Ri :=
∧i

V such that

de1 = de2 = 0, de3 = −e1 ∧ e2 .

According to Leibniz rule we have

d(e1 ∧ e2) = d(e2 ∧ e3) = d(e1 ∧ e3) = d(e1 ∧ e2 ∧ e3) = 0

and there exists an obvious injective morphism j : H∗(R) ↪→ R of cochain complexes
whose image is the graded vector subspace spanned by the six linearly independent vectors
1, e1, e2, e1 ∧ e3, e2 ∧ e3, e1 ∧ e2 ∧ e3; however j is not a morphism of algebras.

Whenever K = R the algebra R can be identified with the algebra of right-invariant
differential forms on the Lie group of real matrices of type1 x1 x3

0 1 x2
0 0 1

 ,

by setting e1 = dx1, e2 = dx2 and e3 = dx3 − x1dx2. The non formality of R may be
easily checked, as in [7], by computing the triple Massey products; here we obtain again
this result as a consequence of Proposition 1.9.

Definition 1.4. A DG-Lie algebra (short for differential graded Lie algebra) is the data
of a Z-graded vector space L = ⊕n∈ZLn, equipped with a differential d : Ln → Ln+1,
d2 = 0, and a bracket

Ln × Lm → Ln+m, (a, b) 7→ [a, b],

which satisfy the following conditions:

(1) (graded anti commutativity) [a, b] = −(−1)deg(a) deg(b)[b, a];

(2) (graded Leibniz) d[a, b] = [da, b] + (−1)deg(a)[a, db];

(3) (graded Jacobi) [[a, b], c] = [a, [b, c]]− (−1)deg(a) deg(b)[b, [a, c]].

As above, every DG-Lie algebra is also a cochain complex and its cohomology inherits
a structure of graded Lie algebra. A morphism of DG-Lie algebras is simply a morphism
of graded Lie algebras commuting with differentials.

Example 1.5. The Kodaira-Spencer DG-Lie algebra KSX of a complex manifold X is
defined as the Dolbeault complex A0,∗

X (ΘX) of the holomorphic tangent sheaf equipped
with the natural extension of the usual bracket on smooth sections of ΘX , see e.g. [6].
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If L is a DG-Lie algebra and A is a DG-algebra, then the tensor product L⊗ A has a
natural structure of DG-Lie algebra, where:

d(x⊗ a) = dx⊗ a+ (−1)deg(x)x⊗ da, [x⊗ a, y ⊗ b] = (−1)deg(a) deg(y)[x, y]⊗ ab .

Let’s denote by Art the category of Artin local K-algebras with residue field K and by
Set the category of sets. Unless otherwise specified, for every A ∈ Art we shall denote
by mA its maximal ideal. Every DG-Lie algebra L gives a functor

MCL : Art→ Set, MCL(A) =

{
x ∈ L1 ⊗mA

∣∣∣∣ dx+
1

2
[x, x] = 0

}
The equation dx + [x, x]/2 = 0 is called the Maurer-Cartan equation and MCL is called
the Maurer-Cartan functor associated to L. Two elements x, y ∈ MCL(A) are said to be
gauge equivalent if there exists a ∈ L0 ⊗mA such that

y = ea ∗ x := x+

∞∑
n=0

[a,−]n

(n+ 1)!
([a, x]− da).

Then we define the functor DefL : Art→ Set defined as (we refer to [5, 12, 13] for details):

DefL(A) =
MCL(A)

gauge equivalence
.

The projection MCL → DefL is a formally smooth natural tranformation: this means

that, given a surjective morphism A
α−→B in the category Art, an element x ∈ MCL(B)

can be lifted to MCL(A) if and only if its equivalence class [x] ∈ DefL(B) can be lifted to
DefL(A).

In this paper we shall need several times the following results (for a proof see e.g.
Theorem 5.71 of [13]). A morphism of DG-Lie algebras f : L → M is called a quasi-
isomorphism if the induced map in cohomology f : H∗(L) → H∗(M) is an isomorphism
of graded Lie algebras.

Theorem 1.6 (Schlessinger-Stasheff [18]). Let L → M be a morphism of differential
graded Lie algebras. Assume that:

(1) H0(L)→ H0(M) is surjective,
(2) H1(L)→ H1(M) is bijective,
(3) H2(L)→ H2(M) is injective.

Then the induced natural transformation DefL → DefM is an isomorphism of functors.

Corollary 1.7. Let L → M be a quasi-isomorphism of differential graded Lie algebras.
Then the induced natural transformation DefL → DefM is an isomorphism of functors.

The notion of formality extends immediately to differential graded Lie algebras. A
DG-Lie algebra L is called formal if it is connected to the graded Lie algebra H∗(L) by a
finite chain of quasi-isomorphisms of DG-Lie algebras.

As a first application of Theorem 1.6 we have therefore that for a formal DG-Lie algebra
L the functor DefL is determined by the graded Lie algebra structure on H∗(L).

Proposition 1.8. If a differential graded Lie algebra L is formal, then the two maps

DefL(K[t]/(t3))→ DefL(K[t]/(t2)), DefL(K[t]/(tn))→ DefL(K[t]/(t2))

have the same image for every n ≥ 3.
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Proof. We may assume that L is a graded Lie algebra and therefore its Maurer-Cartan
equation becomes [x, x] = 0, x ∈ L1. Therefore tx1 ∈ DefL(K[t]/(t2)) lifts to DefL(K[t]/(t3))
if and only if there exists x2 ∈ L1 such that

t2[x1, x1] ≡ [tx1 + t2x2, tx1 + t2x2] ≡ 0 (mod t3) ⇐⇒ [x1, x1] = 0

and [x1, x1] = 0 implies that tx1 ∈ DefH(K[t]/(tn)) for every n ≥ 3. �

An example of non formal DG-Lie algebra is provided by the next proposition.

Proposition 1.9. Let n3(K) be the Lie algebra of strictly upper triangular 3× 3 matrices
and let R the Iwasawa DG-algebra defined above. Then:

(1) the differential graded Lie algebra n3(K)⊗R is formal and the functor Defn3(K)⊗R
is smooth;

(2) the differential graded Lie algebra sl2(K)⊗R is not formal and the functor Defsl2(K)⊗R
is not smooth.

Proof. Let’s denote by C ⊂ R the DG-vector subspace spanned by e3, e1 ∧ e2 and by
I ⊂ n3(K) the Lie ideal of matrices of type0 0 t

0 0 0
0 0 0

 , t ∈ K .

Since I = [n3(K), n3(K)] and [I, n3(K)] = 0, the subcomplex I ⊗ C is an acyclic Lie ideal
of n3(K) ⊗ R. The formality of n3(K) ⊗ R is now an immediate consequence of the easy
facts that, the projection

π : n3(K)⊗R→ n3(K)⊗R
I ⊗ C

is a quasi-isomorphism and

π ◦ (Id⊗j) : n3(K)⊗H∗(R)→ n3(K)⊗R
I ⊗ C

is a morphism of differential graded Lie algebras. The smoothness of Defn3(K)⊗R follows
from the fact that the Maurer-Cartan equation in H∗(n3(K) ⊗ R) = n3(K) ⊗ H∗(R) is
trivial.

Next, we shall use Proposition 1.8 in order to prove that M = sl2(K)⊗R is not formal.
More precisely we shall prove that there exists an element in MCM (K[t]/(t2)) which lifts
to MCM (K[t]/(t3)) but does not lift to MCM (K[t]/(t4)). Denote by u, v, h the standard
basis of sl2(K):

[u, v] = h, [h, u] = 2u, [h, v] = −2v,

and consider the element ξ = ue1t+ ve2t− he3t2 ∈ MCM (K[t]/(t3)) ⊂M1 ⊗K[t]/(t3). A
generic element of M1⊗K[t]/(t4) lifting ue1t+ ve2t ∈ MCM (K[t]/(t2)) may be written as

η = ue1t+ ve2t+ (ae1 + be2 + ce3)t2 + (αe1 + βe2 + γe3)t3, a, b, c, α, β, γ ∈ sl2(K) .

Assume that η satisfies the Maurer-Cartan equation. Since

dη = ce1 ∧ e2t2 + γe1 ∧ e2t3,
1

2
[η, η] = he1 ∧ e2t2 + (· · · )t3

we must have c = −h; therefore the coefficient of e1 ∧ e3t3 in 1
2 [η, η] is equal to [u, c] =

[u,−h] = [h, u] = 2u 6= 0 and this gives a contradiction. �

Lemma 1.10. Let L,M be DG-Lie algebras and B a DG-algebra:

(1) if L and B are formal, then L⊗B is a formal DG-Lie algebra;
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(2) if B is unitary, H∗(B) 6= 0 and L⊗B is a formal, then also L is formal;
(3) the DG-Lie algebra L×M is formal if and only if L and M are formal.

Proof. The first item is clear, while the second and the third are exactly Corollaries 3.5
and 3.6 of [14]. �

2. Deformations of products of compact complex manifolds

From now on we work over the field C of complex numbers; every complex manifold is
assumed compact and connected.

By a general and extremely fruitful principle, introduced by Schlessinger-Stasheff [18],
Deligne [1], Drinfeld and developed by many others, over a field of characteristic 0, every
“reasonable” deformation problem is controlled by a differential graded Lie algebra, with
quasi-isomorphic DG-Lie algebras giving the same deformation theory.

For instance, deformations of a compact complex manifold X are controlled by the
quasi-isomorphism class of the Kodaira-Spencer differential graded Lie algebra KSX =
A0,∗
X (ΘX) of differential forms valued in the holomorphic tangent sheaf [6, 17]. This means

that the functor DefX : Art → Set of infinitesimal deformations of X is isomorphic to
the functors DefKSX

.
Here we must pay attention to the fact that the corresponding cohomology graded Lie

algebraH∗(A0,∗
X (ΘX)) = H∗(X,ΘX) is not a complete invariant under quasi-isomorphisms

and, in general, its knowledge is not sufficient to determine the deformation theory of X,
although H1(X,ΘX) is the space of first order deformations, H2(X,ΘX) is an obstruction
space and the quadratic bracket

q : H1(X,ΘX)→ H2(X,ΘX), q(ξ) =
1

2
[ξ, ξ],

is the obstruction to lifting a first order deformation of X up to second order. In particular
the vanishing of the bracket on H∗(X,ΘX) does not imply that X is unobstructed.

Whenever the Kodaira-Spencer algebra KSX is formal, the deformations of X are
determined by the graded Lie algebra H∗(X,ΘX) and the base space of the Kuranishi
family is analytically isomorphic to the germ at 0 of the nullcone of the quadratic map q.

As noticed above, in general the Kodaira-Spencer algebra is not formal, even for pro-
jective manifolds. For example, Vakil proved [19, Thm. 1.1] that for every analytic
singularity (U, 0) defined over Z there exists a complex surface S with very ample canon-
ical bundle such that its local moduli space is analytically isomorphic to the germ at 0 of
U × Cn for some integer n ≥ 0. Choosing U = {(x, y) ∈ C2 | xy(x − y) = 0} and taking
S as above, the Kodaira-Spencer algebra of S cannot be formal. As a warning against
possible mistakes, we note that such a surface S is obstructed although the bracket on
H∗(S,ΘS) is trivial.

Consider now two compact connected complex manifolds X,Y ; given two deformations
XA → Spec(A), YA → Spec(A), of X,Y over the same basis, their fibred product

XA ×Spec(A) YA → Spec(A)

is a deformation of the product X×Y . Therefore it is well defined a natural transformation
of functors

α : DefX ×DefY → DefX×Y .

It is easy to describe α in terms of morphisms of differential graded Lie algebras: denote
by p : X × Y → X and q : X × Y → Y the projections; since

p∗p ∗ΘX = ΘX ⊗ p∗OX×Y = ΘX , q∗q ∗ΘY = ΘY ⊗ q∗OX×Y = ΘY
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and ΘX×Y = p∗ΘX⊕q∗ΘY , we may define two natural injective morphisms of differential
graded Lie algebras

p∗ : KSX → KSX×Y , q∗ : KSY → KSX×Y .

Since [p∗η, q∗µ] = 0 for every η ∈ KSX , µ ∈ KSY , we get a morphism of differential
graded Lie algebras

(1) p∗ × q∗ : KSX ×KSY → KSX×Y

inducing α at the level of associated deformation functors.

Lemma 2.1. Assume X,Y compact and connected. Then the morphism α is an isomor-
phism if and only if

H0(X,ΘX)⊗H1(Y,OY ) = H1(X,OX)⊗H0(Y,ΘY ) = 0 .

Proof. By Künneth formula ([8, Thm. 6.7.8], [10, Thm. 14]) we have:

Hi(X × Y,ΘX×Y ) = Hi(X × Y, p∗ΘX)⊕Hi(X × Y, q∗ΘY ),

Hi(X × Y, p∗ΘX) = ⊕
j
Hj(X,ΘX)⊗Hi−j(Y,OY ),

Hi(X × Y, q∗ΘY ) = ⊕
j
Hj(X,OX)⊗Hi−j(Y,ΘY ).

(2)

The morphism p∗ : KSX → KSX×Y is injective in cohomology and the image ofHi(X,ΘX)
is the subspace Hi(X,ΘX)⊗H0(Y,OY ) ⊂ Hi(X × Y, p∗ΘX); similarly for the morphism
q∗. Thus, H0(KSX×Y ) = H0(KSY )⊕H0(KSY ),

H1(KSX×Y ) =

= H1(KSX)⊕H1(KSY )⊕ (H0(X,ΘX)⊗H1(Y,OY ))⊕ (H1(X,OX)⊗H0(Y,ΘY ))

and we have an injective map H2(KSX)⊕H2(KSY )→ H2(KSX×Y ).
If α is an isomorphism then, looking at first order deformations, we have

H0(X,ΘX)⊗H1(Y,OY ) = H1(X,OX)⊗H0(Y,ΘY ) = 0 .

Conversely, it is sufficient to apply Theorem 1.6 to the DG-Lie morphism p∗ × q∗. �

The assumption of Lemma 2.1 is satisfied in most cases; for instance, a theorem of
Matsumura [15] implies that H0(X,ΘX) = 0 for every compact manifold of general type
X. If H1(X,OX) ⊗ H0(Y,ΘY ) 6= 0, then it is easy to describe deformations of X × Y
that are not a product. Assume that X is a Kähler manifold, then b1(X) 6= 0 and there

exists at least one surjective homomorphism π1(X)
g−→Z. Since H0(Y,ΘY ) 6= 0, there

exists at least a nontrivial one parameter subgroup {θt} ⊂ Aut(Y ), t ∈ C, of holomorphic
automorphisms of Y . Therefore we get a family of representations

ρt : π1(X)→ Aut(Y ), ρt(γ) = θ
g(γ)
t , t ∈ C

inducing a family of locally trivial analytic Y -bundles over X. Moreover, Kodaira and
Spencer proved that projective spaces Pn and complex tori (Cq/Γ) have unobstructed
deformations, while the product (Cq/Γ)×Pn has obstructed deformations for every q ≥ 2
and every n ≥ 1 [11, page 436]. This was the first example of obstructed manifold.

Let’s denote by B∗X = {φ ∈ A0,∗
X | ∂φ = 0} the DG-algebra of antiholomorphic differ-

ential forms on a complex manifold X. In the above setup we can define two morphisms

h1 : KSX ⊗B∗Y → KSX×Y , h1(φ⊗ η) = p∗(φ) ∧ q∗(η),

h2 : B∗X ⊗KSY → KSX×Y , h2(φ⊗ η) = p∗(φ) ∧ q∗(η).
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It is straightforward to check that h1, h2 are morphisms of differential graded Lie algebras
and that the image of h1 commutes with the image of h2. This implies that the morphism
(1) extends naturally to a morphism of differential graded Lie agebras

(3) h : (KSX ⊗B∗Y )× (B∗X ⊗KSY )→ KSX×Y

Theorem 2.2. For every pair of compact connected Kähler manifolds X,Y the morphism
(3) is an injective quasi-isomorphism of differential graded Lie algebras. In particular,
considering H∗(X,OX) and H∗(Y,OY ) as graded commutative algebras (with the usual
cup product), there exists an isomorphism of functors

DefX×Y ∼= DefKSX⊗H∗(Y,OY )×DefKSY ⊗H∗(X,OX) .

Proof. If X is compact Kähler, the ∂∂-lemma implies that BiX ⊂ A
0,i
X is a set of represen-

tative for the Dolbeault cohomology group Hi(X,OX) and therefore B∗X is isomorphic to
H∗(X,OX) as a DG-algebra. Now, the formulas (2) imply immediately that the morphism
(3) is a quasi-isomorphism. �

Corollary 2.3. Let X,Y be compact Kähler manifolds. Then KSX×Y is a formal DG-Lie
algebra if and only if KSX and KSY are formal.

Proof. Immediate consequence of Lemma 1.10 and Theorem 2.2. �

3. A DG-Lie revisitation of an example by Douady

We want to prove, by a deeper study of a classical example by Douady [3, p. 18] that
Corollary 2.3 fails without the Kähler assumption. The non Kähler manifold involved in
this example is the Iwasawa manifold X, defined as the quotient of the group of complex
matrices of type 1 z1 z3

0 1 z2
0 0 1


by the right action of the cocompact subgroup of matrices with coefficients in the Gauss
integers. By a (non trivial) result by Nakamura [16, p. 96] (cf. also [6, Lemma 6.5]), the
morphism of DG-algebras

j : R→ A0,∗
X , j(e1) = dz1, j(e2) = dz2, j(e3) = dz3 − z1dz2,

is a quasi-isomorphism. BeingX parallelizable the morphism of DG-Lie algebrasH0(X,ΘX)⊗
R → A0,∗

X (ΘX) is a quasi-isomorphism; in view of the isomorphism of Lie algebras
n3(C) ' H0(X,ΘX):0 a c

0 0 b
0 0 0

 7→ a
∂

∂z1
+ b

(
∂

∂z2
+ z1

∂

∂z3

)
+ c

∂

∂z3
.

we get that the Kodaira-Spencer algebra of the Iwasawa manifold X is quasi-isomorphic
to the formal DG-Lie algebra n3(C)⊗R.

Consider now Y = P1, then H∗(Y,ΘY ) = H0(Y,ΘY ) ' sl2(C) and therefore the
Kodaira-Spencer algebra KSY is quasi-isomorphic to the Lie algebra sl2(C).

Since every differential form in the image of j is antiholomorphic, as above we can
define a morphism of DG-Lie algebras

(4) (KSX ⊗B∗Y )× (R⊗KSY )→ KSX×Y

which, by Künneth formula is a quasi-isomorphism. Thus the Kodaira-Spencer algebra of
X × Y is quasi-isomorphic to (n3(C)⊗R)× (sl2(C)⊗R).
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Since sl2(C) ⊗ R is not formal, by Lemma 1.10, also the Kodaira-Spencer algebra of
X × Y is not formal. It is possible to prove, using the above results, that the base space
of the Kuranishi family of X × Y is isomorphic to (C6 × U, 0), where U ⊂ C6 is a cone
defined by six homogeneous polynomials of degree 3.
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