We propose as a generalization of an idea of Ruelle's to describe turbulent fluid flow a chaotic hypothesis for reversible dissipative many particle systems in nonequilibrium stationary states in general. This implies an extension of the zeroth law of thermodynamics to non equilibrium states and it leads to the identification of a unique distribution $\m$ describing the asymptotic properties of the time evolution of the system for initial data randomly chosen with respect to a uniform distribution on phase space. For conservative systems in thermal equilibrium the chaotic hypothesis implies the ergodic hypothesis. We outline a procedure to obtain the distribution $\m$: it leads to a new unifying point of view for the phase space behavior of dissipative and conservative systems. The chaotic hypothesis is confirmed in a non trivial, parameter--free, way by a recent computer experiment on the entropy production fluctuations in a shearing fluid far from equilibrium. Similar applications to other models are proposed, in particular to a model for the Kolmogorov--Obuchov theory for turbulent flow

Field theory and KAM tori / Gallavotti, Giovanni; Gentile, G; Mastropietro, V.. - In: MPEJ. - ISSN 1086-6655. - ELETTRONICO. - 1:(1995), pp. 1-9.

Field theory and KAM tori

GALLAVOTTI, Giovanni;MASTROPIETRO V.
1995

Abstract

We propose as a generalization of an idea of Ruelle's to describe turbulent fluid flow a chaotic hypothesis for reversible dissipative many particle systems in nonequilibrium stationary states in general. This implies an extension of the zeroth law of thermodynamics to non equilibrium states and it leads to the identification of a unique distribution $\m$ describing the asymptotic properties of the time evolution of the system for initial data randomly chosen with respect to a uniform distribution on phase space. For conservative systems in thermal equilibrium the chaotic hypothesis implies the ergodic hypothesis. We outline a procedure to obtain the distribution $\m$: it leads to a new unifying point of view for the phase space behavior of dissipative and conservative systems. The chaotic hypothesis is confirmed in a non trivial, parameter--free, way by a recent computer experiment on the entropy production fluctuations in a shearing fluid far from equilibrium. Similar applications to other models are proposed, in particular to a model for the Kolmogorov--Obuchov theory for turbulent flow
1995
KAM; Filed theory; RENORMALIZATION GROUP; Lindstedt series
01 Pubblicazione su rivista::01a Articolo in rivista
Field theory and KAM tori / Gallavotti, Giovanni; Gentile, G; Mastropietro, V.. - In: MPEJ. - ISSN 1086-6655. - ELETTRONICO. - 1:(1995), pp. 1-9.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/5995
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact