Aberrant upregulation of NOTCH3 gene plays a critical role in cancer pathogenesis. However, the underlying mechanisms are still unknown. We tested here the hypothesis that aberrant epigenetic modifications in the NOTCH3 promoter region might account for its upregulation in cancer cells. We compared DNA and histone methylation status of NOTCH3 promoter region in human normal blood cells and T cell acute lymphoblastic leukemia (T-ALL) cell lines, differentially expressing NOTCH3. We found that histone methylation, rather than DNA hypomethylation, contributes towards establishing an active chromatin status of NOTCH3 promoter in NOTCH3 overexpressing cancer cells. We discovered that the chromatin regulator protein BORIS/CTCFL plays an important role in regulating NOTCH3 gene expression. We observed that BORIS is present in T-ALL cell lines as well as in cell lines derived from several solid tumors overexpressing NOTCH3. Moreover, BORIS targets NOTCH3 promoter in cancer cells and it is able to induce and to maintain a permissive/active chromatin conformation. Importantly, the association between NOTCH3 overexpression and BORIS presence was confirmed in primary T-ALL samples from patients at the onset of the disease. Overall, our results provide novel insights into the determinants of NOTCH3 overexpression in cancer cells, by revealing a key role for BORIS as the main mediator of transcriptional deregulation of NOTCH3. Copyright © 2014 Elsevier B.V. All rights reserved.
The epigenetic factor BORIS/CTCFL regulates the NOTCH3 gene expression in cancer cells / Zampieri, Michele; Ciccarone, Fabio; Palermo, Rocco; Cialfi, Samantha; Claudio, Passananti; Chiaretti, Sabina; Nocchia, Daniela; Talora, Claudio; Screpanti, Isabella; Caiafa, Paola. - In: BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS. - ISSN 1874-9399. - ELETTRONICO. - 1839:9(2014), pp. 813-825. [10.1016/j.bbagrm.2014.06.017]
The epigenetic factor BORIS/CTCFL regulates the NOTCH3 gene expression in cancer cells.
ZAMPIERI, MichelePrimo
;CICCARONE, FABIO;PALERMO, ROCCO;CIALFI, Samantha;CHIARETTI, sabina;NOCCHIA, DANIELA;TALORA, Claudio;SCREPANTI, Isabella;CAIAFA, Paola
2014
Abstract
Aberrant upregulation of NOTCH3 gene plays a critical role in cancer pathogenesis. However, the underlying mechanisms are still unknown. We tested here the hypothesis that aberrant epigenetic modifications in the NOTCH3 promoter region might account for its upregulation in cancer cells. We compared DNA and histone methylation status of NOTCH3 promoter region in human normal blood cells and T cell acute lymphoblastic leukemia (T-ALL) cell lines, differentially expressing NOTCH3. We found that histone methylation, rather than DNA hypomethylation, contributes towards establishing an active chromatin status of NOTCH3 promoter in NOTCH3 overexpressing cancer cells. We discovered that the chromatin regulator protein BORIS/CTCFL plays an important role in regulating NOTCH3 gene expression. We observed that BORIS is present in T-ALL cell lines as well as in cell lines derived from several solid tumors overexpressing NOTCH3. Moreover, BORIS targets NOTCH3 promoter in cancer cells and it is able to induce and to maintain a permissive/active chromatin conformation. Importantly, the association between NOTCH3 overexpression and BORIS presence was confirmed in primary T-ALL samples from patients at the onset of the disease. Overall, our results provide novel insights into the determinants of NOTCH3 overexpression in cancer cells, by revealing a key role for BORIS as the main mediator of transcriptional deregulation of NOTCH3. Copyright © 2014 Elsevier B.V. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
Zampieri_epigenetic-factor_2014.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.37 MB
Formato
Adobe PDF
|
2.37 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.