The observed low-frequency variability of the zonally averaged atmospheric circulation in the winter hemisphere is found to be amenable to an interpretation where the subtropical jet is flanked by a secondary midlatitude one. Observations also suggest that the link between the stratosphere and the troposphere modulates the variability of the tropospheric double-jet structure. Moreover, the summer hemisphere is characterized by a strong midlatitude jet sided by an intermittent subtropical one and easterly winds in the stratosphere. This work addresses the question about the role of eddies in generating and maintaining these key features of the general circulation by means of a simplified general circulation model. Model solutions for different parameter settings and external radiative forcings in the stratosphere are studied with and without eddies active on the system. The following main findings are noted. 1) Eddy dynamics alone, through the baroclinic instability processes in an atmosphere subjected to radiative forcing and dissipation, may account for the observed meridional variance of the tropospheric jets. 2) The Hadley cell can extend to the pole overlying the Ferrel cell, a feature supported by observations in the summer hemisphere. 3) The meridional temperature gradient reversal in the summer stratosphere contributes to the observed low-frequency variability introducing an intermittent formation of a subtropical jet and the occurrence of easterlies in the tropical stratosphere. 4) Poleward propagation of the zonal wind anomaly is, when it occurs, related to the activity of synoptic eddies.

Tropospheric double jets, meridional cells, and eddies: A case study and idealized simulations / Bordi, Isabella; Klaus, Fraedrich; Frank, Lunkeit; Sutera, Alfonso. - In: MONTHLY WEATHER REVIEW. - ISSN 0027-0644. - STAMPA. - 135:9(2007), pp. 3118-3133. [10.1175/mwr3464.1]

Tropospheric double jets, meridional cells, and eddies: A case study and idealized simulations

BORDI, Isabella;SUTERA, Alfonso
2007

Abstract

The observed low-frequency variability of the zonally averaged atmospheric circulation in the winter hemisphere is found to be amenable to an interpretation where the subtropical jet is flanked by a secondary midlatitude one. Observations also suggest that the link between the stratosphere and the troposphere modulates the variability of the tropospheric double-jet structure. Moreover, the summer hemisphere is characterized by a strong midlatitude jet sided by an intermittent subtropical one and easterly winds in the stratosphere. This work addresses the question about the role of eddies in generating and maintaining these key features of the general circulation by means of a simplified general circulation model. Model solutions for different parameter settings and external radiative forcings in the stratosphere are studied with and without eddies active on the system. The following main findings are noted. 1) Eddy dynamics alone, through the baroclinic instability processes in an atmosphere subjected to radiative forcing and dissipation, may account for the observed meridional variance of the tropospheric jets. 2) The Hadley cell can extend to the pole overlying the Ferrel cell, a feature supported by observations in the summer hemisphere. 3) The meridional temperature gradient reversal in the summer stratosphere contributes to the observed low-frequency variability introducing an intermittent formation of a subtropical jet and the occurrence of easterlies in the tropical stratosphere. 4) Poleward propagation of the zonal wind anomaly is, when it occurs, related to the activity of synoptic eddies.
2007
01 Pubblicazione su rivista::01a Articolo in rivista
Tropospheric double jets, meridional cells, and eddies: A case study and idealized simulations / Bordi, Isabella; Klaus, Fraedrich; Frank, Lunkeit; Sutera, Alfonso. - In: MONTHLY WEATHER REVIEW. - ISSN 0027-0644. - STAMPA. - 135:9(2007), pp. 3118-3133. [10.1175/mwr3464.1]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/575
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact