A flat X-ray detector with lead oxide (PbO) as direct conversion material has been developed. The material lead oxide, which has a very high X-ray absorption, was analysed in detail including Raman spectroscopy and electron microscopy. X-ray performance data such as dark current, charge yield and temporal behaviour were evaluated on small functional samples. A process to cover a-Si TFT-plates with PbO has been developed. We present imaging results from a large detector with an active area of 18 x 20 cm(2). The detector has 1080 x 960 pixels with a pixel pitch of 184 mum. The linearity of detector response was verified. The NPS was determined with a total dark noise as low as 1800 electrons/pixel. The MTF was measured with two different methods: first with the analysis of a square wave phantom and second with a narrow slit. The MTF at the Nyquist frequency of 2.72 lp/mm was 50 %. We calculated first DQE values of our prototype detector plates. Full size images of anatomic and technical phantoms are shown.

PbO as direct conversion X-ray detector material / M., Simon; R. A., Ford; A. R., Franklin; S. P., Grabowski; B., Menser; G., Much; Nascetti, Augusto; M., Overdick; M. J., Powell; D. U., Wiechert. - 5368:1(2004), pp. 188-199. (Intervento presentato al convegno Medical Imaging 2004 Conference tenutosi a San Diego, CA nel FEB 17-19, 2004) [10.1117/12.533010].

PbO as direct conversion X-ray detector material

NASCETTI, Augusto;
2004

Abstract

A flat X-ray detector with lead oxide (PbO) as direct conversion material has been developed. The material lead oxide, which has a very high X-ray absorption, was analysed in detail including Raman spectroscopy and electron microscopy. X-ray performance data such as dark current, charge yield and temporal behaviour were evaluated on small functional samples. A process to cover a-Si TFT-plates with PbO has been developed. We present imaging results from a large detector with an active area of 18 x 20 cm(2). The detector has 1080 x 960 pixels with a pixel pitch of 184 mum. The linearity of detector response was verified. The NPS was determined with a total dark noise as low as 1800 electrons/pixel. The MTF was measured with two different methods: first with the analysis of a square wave phantom and second with a narrow slit. The MTF at the Nyquist frequency of 2.72 lp/mm was 50 %. We calculated first DQE values of our prototype detector plates. Full size images of anatomic and technical phantoms are shown.
2004
9780819452818
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/57189
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 40
social impact