The endogenous lipid messenger oleoylethanolamide (OEA) inhibits eating and modulates fat metabolism supposedly through the activation of peroxisome proliferator-activated receptor-α (PPARα) and vagal sensory fibers. We tested in adult male rats whether OEA stimulates fatty acid oxidation (FAO) and ketogenesis and whether it increases plasma levels of the satiating gut peptides glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). We also explored whether OEA still inhibits eating after subdiaphragmatic vagal deafferentation (SDA). We found that intraperitoneally injected OEA (10 mg/kg body wt) reduced (P < 0.05) food intake mainly by increasing meal latency and that this effect was stronger in rats fed a 60% high-fat diet (HFD) than in chow-fed rats. OEA increased (P < 0.05) postprandial plasma nonesterified fatty acids and β-hydroxybutyrate (BHB) in the hepatic portal vein (HPV) and vena cava (VC) 30 min after injection, which was more pronounced in HFD- than in chow-fed rats. OEA also increased the protein expression of the key ketogenetic enzyme, mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase, in the jejunum of HFD-fed rats, but not in the liver or duodenum of either diet group. Furthermore, OEA decreased GLP-1 and PYY concentrations (P < 0.05) in the HPV and VC 30 min after administration. Finally, OEA reduced food intake in SDA and sham-operated rats similarly. Our findings indicate that neither intact abdominal vagal afferents nor prandial increases in GLP-1 or PYY are necessary for the satiety effect of OEA. The enhanced FAO and ketogenesis raise the possibility of an involvement of intestine-derived BHB in OEA's satiety effect under certain conditions. © 2014 the American Physiological Society.

Vagal afferents are not necessary for the satiety effect of the gut lipid messenger oleoylethanolamide / E., Karimian Azari; D., Ramachandran; S., Weibel; M., Arnold; Romano, Adele; Gaetani, Silvana; W., Langhans; A., Mansouri. - In: AMERICAN JOURNAL OF PHYSIOLOGY. REGULATORY, INTEGRATIVE AND COMPARATIVE PHYSIOLOGY. - ISSN 0363-6119. - ELETTRONICO. - 307:2(2014), pp. R167-R178. [10.1152/ajpregu.00067.2014]

Vagal afferents are not necessary for the satiety effect of the gut lipid messenger oleoylethanolamide

ROMANO, ADELE;GAETANI, SILVANA;
2014

Abstract

The endogenous lipid messenger oleoylethanolamide (OEA) inhibits eating and modulates fat metabolism supposedly through the activation of peroxisome proliferator-activated receptor-α (PPARα) and vagal sensory fibers. We tested in adult male rats whether OEA stimulates fatty acid oxidation (FAO) and ketogenesis and whether it increases plasma levels of the satiating gut peptides glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). We also explored whether OEA still inhibits eating after subdiaphragmatic vagal deafferentation (SDA). We found that intraperitoneally injected OEA (10 mg/kg body wt) reduced (P < 0.05) food intake mainly by increasing meal latency and that this effect was stronger in rats fed a 60% high-fat diet (HFD) than in chow-fed rats. OEA increased (P < 0.05) postprandial plasma nonesterified fatty acids and β-hydroxybutyrate (BHB) in the hepatic portal vein (HPV) and vena cava (VC) 30 min after injection, which was more pronounced in HFD- than in chow-fed rats. OEA also increased the protein expression of the key ketogenetic enzyme, mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase, in the jejunum of HFD-fed rats, but not in the liver or duodenum of either diet group. Furthermore, OEA decreased GLP-1 and PYY concentrations (P < 0.05) in the HPV and VC 30 min after administration. Finally, OEA reduced food intake in SDA and sham-operated rats similarly. Our findings indicate that neither intact abdominal vagal afferents nor prandial increases in GLP-1 or PYY are necessary for the satiety effect of OEA. The enhanced FAO and ketogenesis raise the possibility of an involvement of intestine-derived BHB in OEA's satiety effect under certain conditions. © 2014 the American Physiological Society.
2014
small intestine; ketogenesis; fatty acid oxidation; food intake; gut peptides
01 Pubblicazione su rivista::01a Articolo in rivista
Vagal afferents are not necessary for the satiety effect of the gut lipid messenger oleoylethanolamide / E., Karimian Azari; D., Ramachandran; S., Weibel; M., Arnold; Romano, Adele; Gaetani, Silvana; W., Langhans; A., Mansouri. - In: AMERICAN JOURNAL OF PHYSIOLOGY. REGULATORY, INTEGRATIVE AND COMPARATIVE PHYSIOLOGY. - ISSN 0363-6119. - ELETTRONICO. - 307:2(2014), pp. R167-R178. [10.1152/ajpregu.00067.2014]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/563923
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 35
social impact