Integral abutment bridges (IAB) are experiencing increasing diffusion in the short to mid-range lengths, where they offer some advantages over traditional girder bridges with non-monolithic connection at the abutments. One challenging problem with their analysis and design is that consideration of the interaction between foundation soil, structure and backfill is unavoidable, also for the deck design. Further, the end of the construction is only one of the conditions that need to be verified during design. Cyclic deformations, such as those occurring during ground shaking, typically lead to an increase in stresses in the abutments and connections, due to progressive compaction (ratcheting) of the backfill soil. This problem is magnified when the bridge is comprised between two embankments, whose response may amplify the input motion and drive the deformation of the bridge. Performance-based design aims at superseding current design procedures by explicitly checking that the target performances set out are achieved, and not overly exceeded. Such a design paradigm naturally calls, on the one hand, for improved accuracy in response determination and more refined analyses, and, on the other, for taking into account the uncertainties entering into the problem by means of an explicitly probabilistic approach. With this objective in mind, the paper presents an inelastic dynamic model for the seismic analysis and design of IABs. The model, that features a balanced compromise between the setup and evaluation effort on one hand, and accuracy on the other, has been developed for implementation in typical commercial analysis packages. It builds on 1D site-response analysis and on inelastic Winkler-like modeling, to reproduce the main physical aspects of the seismic response of IABs. One example application to a highway overpass in Italy illustrates the model and the relevance of a fully probabilistic approach to performance-based design. The application offers also important insight into the choice of an efficient intensity measure for this type of structure.
Performance-based seismic design of integral abutment bridges / Franchin, Paolo; Pinto, Paolo Emilio. - In: BULLETIN OF EARTHQUAKE ENGINEERING. - ISSN 1570-761X. - STAMPA. - 12:2(2014), pp. 939-960. [10.1007/s10518-013-9552-2]
Performance-based seismic design of integral abutment bridges
FRANCHIN, Paolo;PINTO, Paolo Emilio
2014
Abstract
Integral abutment bridges (IAB) are experiencing increasing diffusion in the short to mid-range lengths, where they offer some advantages over traditional girder bridges with non-monolithic connection at the abutments. One challenging problem with their analysis and design is that consideration of the interaction between foundation soil, structure and backfill is unavoidable, also for the deck design. Further, the end of the construction is only one of the conditions that need to be verified during design. Cyclic deformations, such as those occurring during ground shaking, typically lead to an increase in stresses in the abutments and connections, due to progressive compaction (ratcheting) of the backfill soil. This problem is magnified when the bridge is comprised between two embankments, whose response may amplify the input motion and drive the deformation of the bridge. Performance-based design aims at superseding current design procedures by explicitly checking that the target performances set out are achieved, and not overly exceeded. Such a design paradigm naturally calls, on the one hand, for improved accuracy in response determination and more refined analyses, and, on the other, for taking into account the uncertainties entering into the problem by means of an explicitly probabilistic approach. With this objective in mind, the paper presents an inelastic dynamic model for the seismic analysis and design of IABs. The model, that features a balanced compromise between the setup and evaluation effort on one hand, and accuracy on the other, has been developed for implementation in typical commercial analysis packages. It builds on 1D site-response analysis and on inelastic Winkler-like modeling, to reproduce the main physical aspects of the seismic response of IABs. One example application to a highway overpass in Italy illustrates the model and the relevance of a fully probabilistic approach to performance-based design. The application offers also important insight into the choice of an efficient intensity measure for this type of structure.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.